A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations

Vivette Girault; Béatrice Rivière; Mary F. Wheeler

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 6, page 1115-1147
  • ISSN: 0764-583X

Abstract

top
In this paper we solve the time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.

How to cite

top

Girault, Vivette, Rivière, Béatrice, and Wheeler, Mary F.. "A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.6 (2005): 1115-1147. <http://eudml.org/doc/245451>.

@article{Girault2005,
abstract = {In this paper we solve the time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.},
author = {Girault, Vivette, Rivière, Béatrice, Wheeler, Mary F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {operator splitting; time-dependent Navier-Stokes; SIPG; finite element methods; optimal error estimates},
language = {eng},
number = {6},
pages = {1115-1147},
publisher = {EDP-Sciences},
title = {A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations},
url = {http://eudml.org/doc/245451},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Girault, Vivette
AU - Rivière, Béatrice
AU - Wheeler, Mary F.
TI - A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 6
SP - 1115
EP - 1147
AB - In this paper we solve the time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.
LA - eng
KW - operator splitting; time-dependent Navier-Stokes; SIPG; finite element methods; optimal error estimates
UR - http://eudml.org/doc/245451
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell and M.L. Welcome, A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. Technical Report LNBL-39075, UC-405 (1996). Zbl0933.76055
  3. [3] C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175 (1999) 311–341. Zbl0924.76051
  4. [4] J. Blasco and R. Codina, Error estimates for an operator-splitting method for incompressible flows. Appl. Numer. Math. 51 (2004) 1–17. Zbl1126.76339
  5. [5] J. Blasco, R. Codina and A. Huerta, A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm. Int. J. Numer. Meth. Fl. 28 (1997) 1391–1419. Zbl0935.76041
  6. [6] P.G. Ciarlet, The finite element methods for elliptic problems. North-Holland, Amsterdam (1978). Zbl0999.65129MR1115235
  7. [7] A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745–762. Zbl0198.50103
  8. [8] M. Crouzeix and P.A. Raviart, Conforming and non conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. R3 (1973) 33–76. Zbl0302.65087
  9. [9] C. Dawson and J .Proft, Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4721–4746. Zbl1015.76046
  10. [10] C. Dawson, S. Sun and M. Wheeler, Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Engrg. (2003) 2565–2580. Zbl1067.76565
  11. [11] E. Fernandez-Cara and M.M. Beltram, The convergence of two numerical schemes for the Navier-Stokes equations. Numer. Math. 55 (1989) 33–60. Zbl0645.76032
  12. [12] V. Girault and J.-L. Lions, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25–57. Zbl0997.76043
  13. [13] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Lecture Notes in Math. 749, Springer-Verlag, Berlin, Heidelberg, New-York (1979). Zbl0413.65081MR851383
  14. [14] V. Girault, B. Rivière and M.F. Wheeler, A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74 (2005) 53–84. Zbl1057.35029
  15. [15] R. Glowinski, Finite element methods for Incompressible Viscous Flows, in Numerical Methods for Fluids (Part 3), Handbook of Numerical Analysis, 9, Elsevier, North-Holland (2003). Zbl1040.76001MR2009826
  16. [16] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Monogr. Studies Pure Appl. Math. 24, Pitman, Boston, MA (1985). Zbl0695.35060MR775683
  17. [17] J.L. Guermond and L. Quartapelle, On the approximation of the unsteady Navier-Stokes equations by finite element projection methods. Numer. Math. 80 (1998) 207–238. Zbl0914.76051
  18. [18] J.L. Guermond and J. Shen, Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41 (2003) 112–134. Zbl1130.76395
  19. [19] J.L. Guermond and J. Shen, A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192 (2003) 262–276. Zbl1032.76529
  20. [20] S. Kaya and B. Rivière, A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. (2005), to appear. Zbl1096.76026MR2182140
  21. [21] P. Lesaint and P.A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Element Methods in Partial Differential Equations, C.A. de Boor Ed., Academic Press (1974) 89–123. Zbl0341.65076
  22. [22] J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, I. Dunod, Paris (1968). Zbl0165.10801
  23. [23] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
  24. [24] A. Quarteroni, F. Saleri and A. Veneziani, Factorization methods for the numerical approximation of Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 188 (2000) 505–526. Zbl0976.76044
  25. [25] R. Rannacher, On Chorin’s projection method for the incompressible Navier-Stokes equations, Navier-Stokes equations: Theory and Numerical Methods, R. Rautmann et al. Eds., Springer (1992). Zbl0769.76053
  26. [26] B. Rivière, M.F. Wheeler and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3 (1999) 337–360. Zbl0951.65108
  27. [27] R. Temam, Sur l’approximation de la solution des equations de Navier-Stokes par la méthode des pas fractionnaires (I), (II). Arch. Rational Mech. Anal. 33 (1969) 377–385. Zbl0207.16904
  28. [28] R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland, Amsterdam (1979). Zbl0426.35003MR603444
  29. [29] S. Turek, On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmic approach. Comput. Methods Appl. Mech. Engrg. 143 (1997) 271–288. Zbl0898.76069
  30. [30] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. Zbl0384.65058
  31. [31] N.N. Yanenko, The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer-Verlag, New York (1971). Zbl0209.47103MR307493

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.