A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations
Vivette Girault; Béatrice Rivière; Mary F. Wheeler
- Volume: 39, Issue: 6, page 1115-1147
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topGirault, Vivette, Rivière, Béatrice, and Wheeler, Mary F.. "A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.6 (2005): 1115-1147. <http://eudml.org/doc/245451>.
@article{Girault2005,
abstract = {In this paper we solve the time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.},
author = {Girault, Vivette, Rivière, Béatrice, Wheeler, Mary F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {operator splitting; time-dependent Navier-Stokes; SIPG; finite element methods; optimal error estimates},
language = {eng},
number = {6},
pages = {1115-1147},
publisher = {EDP-Sciences},
title = {A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations},
url = {http://eudml.org/doc/245451},
volume = {39},
year = {2005},
}
TY - JOUR
AU - Girault, Vivette
AU - Rivière, Béatrice
AU - Wheeler, Mary F.
TI - A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 6
SP - 1115
EP - 1147
AB - In this paper we solve the time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.
LA - eng
KW - operator splitting; time-dependent Navier-Stokes; SIPG; finite element methods; optimal error estimates
UR - http://eudml.org/doc/245451
ER -
References
top- [1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
- [2] A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell and M.L. Welcome, A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. Technical Report LNBL-39075, UC-405 (1996). Zbl0933.76055
- [3] C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175 (1999) 311–341. Zbl0924.76051
- [4] J. Blasco and R. Codina, Error estimates for an operator-splitting method for incompressible flows. Appl. Numer. Math. 51 (2004) 1–17. Zbl1126.76339
- [5] J. Blasco, R. Codina and A. Huerta, A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm. Int. J. Numer. Meth. Fl. 28 (1997) 1391–1419. Zbl0935.76041
- [6] P.G. Ciarlet, The finite element methods for elliptic problems. North-Holland, Amsterdam (1978). Zbl0999.65129MR1115235
- [7] A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745–762. Zbl0198.50103
- [8] M. Crouzeix and P.A. Raviart, Conforming and non conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. R3 (1973) 33–76. Zbl0302.65087
- [9] C. Dawson and J .Proft, Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4721–4746. Zbl1015.76046
- [10] C. Dawson, S. Sun and M. Wheeler, Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Engrg. (2003) 2565–2580. Zbl1067.76565
- [11] E. Fernandez-Cara and M.M. Beltram, The convergence of two numerical schemes for the Navier-Stokes equations. Numer. Math. 55 (1989) 33–60. Zbl0645.76032
- [12] V. Girault and J.-L. Lions, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25–57. Zbl0997.76043
- [13] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Lecture Notes in Math. 749, Springer-Verlag, Berlin, Heidelberg, New-York (1979). Zbl0413.65081MR851383
- [14] V. Girault, B. Rivière and M.F. Wheeler, A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74 (2005) 53–84. Zbl1057.35029
- [15] R. Glowinski, Finite element methods for Incompressible Viscous Flows, in Numerical Methods for Fluids (Part 3), Handbook of Numerical Analysis, 9, Elsevier, North-Holland (2003). Zbl1040.76001MR2009826
- [16] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Monogr. Studies Pure Appl. Math. 24, Pitman, Boston, MA (1985). Zbl0695.35060MR775683
- [17] J.L. Guermond and L. Quartapelle, On the approximation of the unsteady Navier-Stokes equations by finite element projection methods. Numer. Math. 80 (1998) 207–238. Zbl0914.76051
- [18] J.L. Guermond and J. Shen, Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41 (2003) 112–134. Zbl1130.76395
- [19] J.L. Guermond and J. Shen, A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192 (2003) 262–276. Zbl1032.76529
- [20] S. Kaya and B. Rivière, A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. (2005), to appear. Zbl1096.76026MR2182140
- [21] P. Lesaint and P.A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Element Methods in Partial Differential Equations, C.A. de Boor Ed., Academic Press (1974) 89–123. Zbl0341.65076
- [22] J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, I. Dunod, Paris (1968). Zbl0165.10801
- [23] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). Zbl0189.40603MR259693
- [24] A. Quarteroni, F. Saleri and A. Veneziani, Factorization methods for the numerical approximation of Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 188 (2000) 505–526. Zbl0976.76044
- [25] R. Rannacher, On Chorin’s projection method for the incompressible Navier-Stokes equations, Navier-Stokes equations: Theory and Numerical Methods, R. Rautmann et al. Eds., Springer (1992). Zbl0769.76053
- [26] B. Rivière, M.F. Wheeler and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3 (1999) 337–360. Zbl0951.65108
- [27] R. Temam, Sur l’approximation de la solution des equations de Navier-Stokes par la méthode des pas fractionnaires (I), (II). Arch. Rational Mech. Anal. 33 (1969) 377–385. Zbl0207.16904
- [28] R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland, Amsterdam (1979). Zbl0426.35003MR603444
- [29] S. Turek, On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmic approach. Comput. Methods Appl. Mech. Engrg. 143 (1997) 271–288. Zbl0898.76069
- [30] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. Zbl0384.65058
- [31] N.N. Yanenko, The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer-Verlag, New York (1971). Zbl0209.47103MR307493
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.