Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics
Marzia Bisi; Laurent Desvillettes; Giampiero Spiga
- Volume: 43, Issue: 1, page 151-172
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBisi, Marzia, Desvillettes, Laurent, and Spiga, Giampiero. "Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 43.1 (2009): 151-172. <http://eudml.org/doc/245485>.
@article{Bisi2009,
abstract = {We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.},
author = {Bisi, Marzia, Desvillettes, Laurent, Spiga, Giampiero},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {entropy methods; Lyapounov functionals; reaction-diffusion equations},
language = {eng},
number = {1},
pages = {151-172},
publisher = {EDP-Sciences},
title = {Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics},
url = {http://eudml.org/doc/245485},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Bisi, Marzia
AU - Desvillettes, Laurent
AU - Spiga, Giampiero
TI - Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2009
PB - EDP-Sciences
VL - 43
IS - 1
SP - 151
EP - 172
AB - We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.
LA - eng
KW - entropy methods; Lyapounov functionals; reaction-diffusion equations
UR - http://eudml.org/doc/245485
ER -
References
top- [1] A. Arnold, J.A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jungel, C. Lederman, P.A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of many-particle systems: An essay on recent research. Monat. Mathematik 142 (2004) 35–43. Zbl1063.35109MR2065020
- [2] M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems. J. Stat. Phys. 124 (2006) 881–912. Zbl1134.82323MR2264629
- [3] M. Bisi and G. Spiga, Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations. Commun. Math. Sci. 4 (2006) 779–798. Zbl1120.82011MR2264820
- [4] M. Bisi and G. Spiga, Dissociation and recombination of a diatomic gas in a background medium. Proceedings of 25th International Symposium on Rarefied Gas Dynamics (to appear). Zbl1120.82011MR2264820
- [5] M. Cáceres, J. Carrillo and G. Toscani, Long-time behavior for a nonlinear fourth order parabolic equation. Trans. Amer. Math. Soc. 357 (2005) 1161–1175. Zbl1077.35028MR2110436
- [6] J.A. Carrillo and G. Toscani, Asymptotic -decay of solutions of the porous medium equation to self-similarity. Indiana University Math. J. 49 (2000) 113–142. Zbl0963.35098MR1777035
- [7] M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81 (2002) 847–875. Zbl1112.35310MR1940370
- [8] L. Desvillettes, About entropy methods for reaction-diffusion equations. Rivista Matematica dell’Università di Parma 7 (2007) 81–123. Zbl1171.35409MR2375204
- [9] L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl. 319 (2006) 157–176. Zbl1096.35018MR2217853
- [10] L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion systems: Degenerate diffusion. Discrete Contin. Dyn. Syst. Supplement (2007) 304–312. Zbl1163.35322MR2409225
- [11] L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds. Revista Mat. Iberoamericana (to appear). Zbl1171.35330MR2459198
- [12] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. -theorem and applications. Comm. Partial Differ. Equ. 25 (2000) 261–298. Zbl0951.35130MR1737548
- [13] V. Giovangigli, Multicomponent Flow Modeling. Birkhuser, Boston (1999). Zbl0956.76003MR1713516
- [14] M. Groppi, A. Rossani and G. Spiga, Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state. J. Phys. A 33 (2000) 8819–8833. Zbl0970.82041MR1801471
- [15] M. Kirane, On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an auto-catalytic reversible chemical reaction. Bull. Institute Math. Academia Sinica 18 (1990) 369–377. Zbl0731.35056MR1104954
- [16] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type, Trans. Math. Monographs 23. American Mathematical Society, Providence (1968). Zbl0174.15403
- [17] K. Masuda, On the global existence and asymptotic behavior of solution of reaction-diffusion equations. Hokkaido Math. J. 12 (1983) 360–370. Zbl0529.35037MR719974
- [18] J.A. McLennan, Boltzmann equation for a dissociating gas. J. Stat. Phys. 57 (1989) 887–905.
- [19] Y. Sone, Kinetic Theory and Fluid Dynamics. Birkhuser, Boston (2002). Zbl1021.76002MR1919070
- [20] G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Comm. Math. Phys. 203 (1999) 667–706. Zbl0944.35066MR1700142
- [21] Y. Yoshizawa, Wave structures of a chemically reacting gas by the kinetic theory of gases, in Rarefied Gas Dynamics, J.L. Potter Ed., A.I.A.A., New York (1977) 501–517.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.