Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes
Bernard Roynette; Pierre Vallois; Agnès Volpi
ESAIM: Probability and Statistics (2008)
- Volume: 12, page 58-93
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topRoynette, Bernard, Vallois, Pierre, and Volpi, Agnès. "Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes." ESAIM: Probability and Statistics 12 (2008): 58-93. <http://eudml.org/doc/245499>.
@article{Roynette2008,
abstract = {Let $(X_t, \; t\ge 0)$ be a Lévy process started at $0$, with Lévy measure $\nu $. We consider the first passage time $T_x$ of $(X_t, \; t\ge 0)$ to level $x > 0$, and $ K_x:=X_\{T_x\}-\{\it x\}$ the overshoot and $L_x:=x-X_\{T_\{\{\it x\}^-\}\}$ the undershoot. We first prove that the Laplace transform of the random triple $(T_x,K_x,L_x)$ satisfies some kind of integral equation. Second, assuming that $\nu $ admits exponential moments, we show that $(\widetilde\{T_x\},K_x,L_x)$ converges in distribution as $x\rightarrow \infty $, where $\widetilde\{T_x\}$ denotes a suitable renormalization of $T_x$.},
author = {Roynette, Bernard, Vallois, Pierre, Volpi, Agnès},
journal = {ESAIM: Probability and Statistics},
keywords = {Lévy processes; ruin problem; hitting time; overshoot; undershoot; asymptotic estimates; functional equation},
language = {eng},
pages = {58-93},
publisher = {EDP-Sciences},
title = {Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes},
url = {http://eudml.org/doc/245499},
volume = {12},
year = {2008},
}
TY - JOUR
AU - Roynette, Bernard
AU - Vallois, Pierre
AU - Volpi, Agnès
TI - Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes
JO - ESAIM: Probability and Statistics
PY - 2008
PB - EDP-Sciences
VL - 12
SP - 58
EP - 93
AB - Let $(X_t, \; t\ge 0)$ be a Lévy process started at $0$, with Lévy measure $\nu $. We consider the first passage time $T_x$ of $(X_t, \; t\ge 0)$ to level $x > 0$, and $ K_x:=X_{T_x}-{\it x}$ the overshoot and $L_x:=x-X_{T_{{\it x}^-}}$ the undershoot. We first prove that the Laplace transform of the random triple $(T_x,K_x,L_x)$ satisfies some kind of integral equation. Second, assuming that $\nu $ admits exponential moments, we show that $(\widetilde{T_x},K_x,L_x)$ converges in distribution as $x\rightarrow \infty $, where $\widetilde{T_x}$ denotes a suitable renormalization of $T_x$.
LA - eng
KW - Lévy processes; ruin problem; hitting time; overshoot; undershoot; asymptotic estimates; functional equation
UR - http://eudml.org/doc/245499
ER -
References
top- [1] J. Bertoin, Lévy processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996). Zbl0861.60003MR1406564
- [2] J. Bertoin and R.A. Doney, Cramér’s estimate for Lévy processes. Statist. Probab. Lett. 21 (1994) 363–365. Zbl0809.60085MR1325211
- [3] H. Cramér, Collective risk theory: A survey of the theory from the point of view of the theory of stochastic processes. Skandia Insurance Company, Stockholm, (1955). Reprinted from the Jubilee Volume of Försäkringsaktiebolaget Skandia. MR90177
- [4] H. Cramér, On the mathematical Theory of Risk. Skandia Jubilee Volume, Stockholm (1930). JFM56.1100.03
- [5] R.A. Doney, Hitting probabilities for spectrally positive Lévy processes. J. London Math. Soc. 44 (1991) 566–576. Zbl0699.60061MR1149016
- [6] R.A. Doney and A.E. Kyprianou, Overshoots and undershoots of Lévy processes. Ann. Appl. Probab. 16 (2006) 91–106. Zbl1101.60029MR2209337
- [7] R.A. Doney and R.A. Maller. Stability of the overshoot for Lévy processes. Ann. Probab. 30 (2002) 188–212. Zbl1016.60052MR1894105
- [8] F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion. Insurance Math. Econom. 10 (1991) 51–59. Zbl0723.62065MR1114429
- [9] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1980). Corrected and enlarged edition edited by Alan Jeffrey, Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin], Translated from Russian. Zbl0521.33001
- [10] P.S. Griffin and R.A. Maller, On the rate of growth of the overshoot and the maximum partial sum. Adv. in Appl. Probab. 30 (1998) 181–196. Zbl0905.60064MR1618833
- [11] A. Gut, Stopped random walks, Applied Probability, vol. 5, A Series of the Applied Probability Trust. Springer-Verlag, New York, (1988). Limit theorems and applications. Zbl0634.60061MR916870
- [12] I. Karatzas and S.E. Shreve. Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113. Springer-Verlag, New York, second edition (1991). Zbl0734.60060MR1121940
- [13] A.E. Kyprianou, Introductory lectures on fluctuations of Lévy processes with applications. Universitext. Springer-Verlag, Berlin (2006). Zbl1104.60001MR2250061
- [14] N.N. Lebedev, Special functions and their applications. Dover Publications Inc., New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected republication. Zbl0271.33001
- [15] M. Loève, Probability theory. II. Springer-Verlag, New York, fourth edition (1978). Graduate Texts in Mathematics, Vol. 46. Zbl0385.60001MR651018
- [16] F. Lundberg, I- Approximerad Framställning av Sannolikhetsfunktionen. II- Aterförsäkering av Kollectivrisker. Almqvist and Wiksell, Uppsala (1903).
- [17] T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic processes for insurance and finance. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester (1999). Zbl0940.60005MR1680267
- [18] K. Sato, Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, (1999). Translated from the 1990 Japanese original, Revised by the author. Zbl0973.60001MR1739520
- [19] A.G. Sveshnikov and A.N. Tikhonov, The theory of functions of a complex variable. “Mir”, Moscow (1982). Translated from the Russian by George Yankovsky [G. Yankovskiĭ]. Zbl0531.30002
- [20] A. Volpi, Processus associés à l’équation de diffusion rapide; Étude asymptotique du temps de ruine et de l’overshoot. Univ. Henri Poincaré, Nancy I, Vandoeuvre les Nancy (2003). Thèse.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.