Mesures de défaut de compacité, application au système de Lamé

Nicolas Burq; Gilles Lebeau

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 6, page 817-870
  • ISSN: 0012-9593

How to cite

top

Burq, Nicolas, and Lebeau, Gilles. "Mesures de défaut de compacité, application au système de Lamé." Annales scientifiques de l'École Normale Supérieure 34.6 (2001): 817-870. <http://eudml.org/doc/82559>.

@article{Burq2001,
author = {Burq, Nicolas, Lebeau, Gilles},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Lopatinski condition; asymptotic propagation},
language = {fre},
number = {6},
pages = {817-870},
publisher = {Elsevier},
title = {Mesures de défaut de compacité, application au système de Lamé},
url = {http://eudml.org/doc/82559},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Burq, Nicolas
AU - Lebeau, Gilles
TI - Mesures de défaut de compacité, application au système de Lamé
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 6
SP - 817
EP - 870
LA - fre
KW - Lopatinski condition; asymptotic propagation
UR - http://eudml.org/doc/82559
ER -

References

top
  1. [1] Bardos C, Lebeau G, Rauch J, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim.305 (1992) 1024-1065. Zbl0786.93009MR1178650
  2. [2] Chazarain J, Piriou A, Introduction à la théorie des équations aux dérivées partielles linéaires, Gauthier-Villars, 1970. Zbl0446.35001MR598467
  3. [3] Denker N, On the propagation of the polarization set for systems of real principal type, J. Functional Anal.46 (1982) 351-373. Zbl0487.58028MR661876
  4. [4] Gérard C, Propagation de la polarisation pour des problèmes aux limites convexes pour les bicaractéristiques, Comm. Partial Differential Equations10 (1985) 1347-1382. Zbl0593.58037MR812335
  5. [5] Gérard P, Microlocal defect measures, Comm. Partial Differential Equations16 (1991) 1761-1794. Zbl0770.35001MR1135919
  6. [6] Gérard P, Leichtnam E, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J.71 (1993) 559-607. Zbl0788.35103MR1233448
  7. [7] Hörmander L, The Analysis of Linear Partial Differential Operators I, Grundlehren der mathematischen Wissenschaften, 256, Springer Verlag, 1983. Zbl0521.35001MR717035
  8. [8] Hörmander L, The Analysis of Linear Partial Differential Operators III, Grundlehren der mathematischen Wissenschaften, 274, Springer Verlag, 1985. Zbl0601.35001MR781536
  9. [9] Koch H, Tataru D, On the spectrum of hyperbolic semigroups, Comm. Partial Differential Equations20 (5–6) (1995) 901-937. Zbl0823.35108MR1326911
  10. [10] Lebeau G, Équation des ondes amorties, in: Boutet de Monvel A, Marchenko V (Eds.), Algebraic and Geometric Methods in Mathematical Physics, Kluwer Academic, Dordrecht, 1996, pp. 73-109. Zbl0863.58068MR1385677
  11. [11] Lebeau G, Zuazua E, Decay rates for the three-dimensional linear system of thermoelasticity, Prépublications du Centre de Mathématiques de l'École Polytechnique, 98-3, 1998. Zbl0939.74016MR1716306
  12. [12] Miller L, Propagation d'ondes semi-classiques à travers une interface et mesures 2-microlocales, PhD thesis, École Polytechnique, 1996. 
  13. [13] Melrose R.B, Sjöstrand J, Singularities of boundary value problems I, Comm. Pure Appl. Math.31 (1978) 593-617. Zbl0368.35020MR492794
  14. [14] Melrose R.B, Sjöstrand J, Singularities of boundary value problems I & II, Comm. Pure Appl. Math.31 (1978) 593-617, 35 (1982) 129–168. Zbl0368.35020MR492794
  15. [15] Tartar L, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Royal Soc. Edinburgh115-A (1990) 193-230. Zbl0774.35008MR1069518

Citations in EuDML Documents

top
  1. Boris Kapitonov, Bernadette Miara, Gustavo Perla Menzala, Stabilization of a layered piezoelectric 3-D body by boundary dissipation
  2. Fatiha Alabau-Boussouira, Matthieu Léautaud, Indirect stabilization of locally coupled wave-type systems
  3. Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu, Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method
  4. Nicolas Burq, Maciej Zworski, Control theory and high energy eigenfunctions
  5. Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu, Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method
  6. Fatiha Alabau-Boussouira, Matthieu Léautaud, Indirect stabilization of locally coupled wave-type systems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.