Mesures de défaut de compacité, application au système de Lamé
Annales scientifiques de l'École Normale Supérieure (2001)
- Volume: 34, Issue: 6, page 817-870
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBurq, Nicolas, and Lebeau, Gilles. "Mesures de défaut de compacité, application au système de Lamé." Annales scientifiques de l'École Normale Supérieure 34.6 (2001): 817-870. <http://eudml.org/doc/82559>.
@article{Burq2001,
author = {Burq, Nicolas, Lebeau, Gilles},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Lopatinski condition; asymptotic propagation},
language = {fre},
number = {6},
pages = {817-870},
publisher = {Elsevier},
title = {Mesures de défaut de compacité, application au système de Lamé},
url = {http://eudml.org/doc/82559},
volume = {34},
year = {2001},
}
TY - JOUR
AU - Burq, Nicolas
AU - Lebeau, Gilles
TI - Mesures de défaut de compacité, application au système de Lamé
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 6
SP - 817
EP - 870
LA - fre
KW - Lopatinski condition; asymptotic propagation
UR - http://eudml.org/doc/82559
ER -
References
top- [1] Bardos C, Lebeau G, Rauch J, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim.305 (1992) 1024-1065. Zbl0786.93009MR1178650
- [2] Chazarain J, Piriou A, Introduction à la théorie des équations aux dérivées partielles linéaires, Gauthier-Villars, 1970. Zbl0446.35001MR598467
- [3] Denker N, On the propagation of the polarization set for systems of real principal type, J. Functional Anal.46 (1982) 351-373. Zbl0487.58028MR661876
- [4] Gérard C, Propagation de la polarisation pour des problèmes aux limites convexes pour les bicaractéristiques, Comm. Partial Differential Equations10 (1985) 1347-1382. Zbl0593.58037MR812335
- [5] Gérard P, Microlocal defect measures, Comm. Partial Differential Equations16 (1991) 1761-1794. Zbl0770.35001MR1135919
- [6] Gérard P, Leichtnam E, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J.71 (1993) 559-607. Zbl0788.35103MR1233448
- [7] Hörmander L, The Analysis of Linear Partial Differential Operators I, Grundlehren der mathematischen Wissenschaften, 256, Springer Verlag, 1983. Zbl0521.35001MR717035
- [8] Hörmander L, The Analysis of Linear Partial Differential Operators III, Grundlehren der mathematischen Wissenschaften, 274, Springer Verlag, 1985. Zbl0601.35001MR781536
- [9] Koch H, Tataru D, On the spectrum of hyperbolic semigroups, Comm. Partial Differential Equations20 (5–6) (1995) 901-937. Zbl0823.35108MR1326911
- [10] Lebeau G, Équation des ondes amorties, in: Boutet de Monvel A, Marchenko V (Eds.), Algebraic and Geometric Methods in Mathematical Physics, Kluwer Academic, Dordrecht, 1996, pp. 73-109. Zbl0863.58068MR1385677
- [11] Lebeau G, Zuazua E, Decay rates for the three-dimensional linear system of thermoelasticity, Prépublications du Centre de Mathématiques de l'École Polytechnique, 98-3, 1998. Zbl0939.74016MR1716306
- [12] Miller L, Propagation d'ondes semi-classiques à travers une interface et mesures 2-microlocales, PhD thesis, École Polytechnique, 1996.
- [13] Melrose R.B, Sjöstrand J, Singularities of boundary value problems I, Comm. Pure Appl. Math.31 (1978) 593-617. Zbl0368.35020MR492794
- [14] Melrose R.B, Sjöstrand J, Singularities of boundary value problems I & II, Comm. Pure Appl. Math.31 (1978) 593-617, 35 (1982) 129–168. Zbl0368.35020MR492794
- [15] Tartar L, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Royal Soc. Edinburgh115-A (1990) 193-230. Zbl0774.35008MR1069518
Citations in EuDML Documents
top- Boris Kapitonov, Bernadette Miara, Gustavo Perla Menzala, Stabilization of a layered piezoelectric 3-D body by boundary dissipation
- Fatiha Alabau-Boussouira, Matthieu Léautaud, Indirect stabilization of locally coupled wave-type systems
- Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu, Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method
- Nicolas Burq, Maciej Zworski, Control theory and high energy eigenfunctions
- Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu, Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method
- Fatiha Alabau-Boussouira, Matthieu Léautaud, Indirect stabilization of locally coupled wave-type systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.