Coloration de graphes : fondements et applications

Dominique de Werra; Daniel Kobler

RAIRO - Operations Research - Recherche Opérationnelle (2003)

  • Volume: 37, Issue: 1, page 29-66
  • ISSN: 0399-0559

Abstract

top
The classical colouring models are well known thanks in large part to their applications to scheduling type problems; we describe the basic concepts of colourings together with a number of variations and generalisations arising from scheduling problems such as the creation of school schedules. Some exact and heuristic algorithms will be presented, and we will sketch solution methods based on tabu search to find approximate solutions to large problems. Finally we will also mention the use of colourings for creating schedules in sports leagues and for computer file transfer problems. This paper is an extended version of [37].

How to cite

top

Werra, Dominique de, and Kobler, Daniel. "Coloration de graphes : fondements et applications." RAIRO - Operations Research - Recherche Opérationnelle 37.1 (2003): 29-66. <http://eudml.org/doc/245532>.

@article{Werra2003,
abstract = {Les modèles classiques de coloration doivent leur notoriété en grande partie à leurs applications à des problèmes de type emploi du temps ; nous présentons les concepts de base des colorations ainsi qu’une série de variations et de généralisations motivées par divers problèmes d’ordonnancement dont les élaborations d’horaires scolaires. Quelques algorithmes exacts et heuristiques seront présentés et nous esquisserons des méthodes basées sur la recherche Tabou pour trouver des solutions approchées pour des problèmes de grande taille. Enfin nous mentionnons l’application des colorations à la confection de calendriers de ligues de sport et à des problèmes de transferts de fichiers informatiques. Ce texte est une version étendue de [37].},
author = {Werra, Dominique de, Kobler, Daniel},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {colouring models; scheduling},
language = {fre},
number = {1},
pages = {29-66},
publisher = {EDP-Sciences},
title = {Coloration de graphes : fondements et applications},
url = {http://eudml.org/doc/245532},
volume = {37},
year = {2003},
}

TY - JOUR
AU - Werra, Dominique de
AU - Kobler, Daniel
TI - Coloration de graphes : fondements et applications
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 1
SP - 29
EP - 66
AB - Les modèles classiques de coloration doivent leur notoriété en grande partie à leurs applications à des problèmes de type emploi du temps ; nous présentons les concepts de base des colorations ainsi qu’une série de variations et de généralisations motivées par divers problèmes d’ordonnancement dont les élaborations d’horaires scolaires. Quelques algorithmes exacts et heuristiques seront présentés et nous esquisserons des méthodes basées sur la recherche Tabou pour trouver des solutions approchées pour des problèmes de grande taille. Enfin nous mentionnons l’application des colorations à la confection de calendriers de ligues de sport et à des problèmes de transferts de fichiers informatiques. Ce texte est une version étendue de [37].
LA - fre
KW - colouring models; scheduling
UR - http://eudml.org/doc/245532
ER -

References

top
  1. [1] N. Alon et M. Tarsi, Colorings and orientations of graphs. Combinatorica 12 (1992) 125-134. Zbl0756.05049MR1179249
  2. [2] M. Bellare, O. Goldreich et M. Sudan, Free bits, PCPs and non-approximability – towards tight results. SIAM J. Comput. 27 (1998) 804-915. Zbl0912.68041
  3. [3] C. Berge, Graphes. Gauthier-Villars, Paris (1983). Zbl0531.05031MR722294
  4. [4] C. Berge, Hypergraphes. Gauthier-Villars, Paris (1987). Zbl0623.05001MR898652
  5. [5] C. Berge et V. Chvátal, Topics on Perfect Graphs. Ann. Discrete Math. 21 (1984). Zbl0546.00006MR778744
  6. [6] M. Biró, M. Hujter et Zs. Tuza, Precoloring extension. I. Interval graphs. Discrete Math. 100 (1992) 267-279. Zbl0766.05026MR1172354
  7. [7] H.L. Bodlaender, K. Jansen et G. Woeginger, Scheduling with incompatible jobs. Discrete Appl. Math. 55 (1994) 219-232. Zbl0822.68011MR1308879
  8. [8] V. Chvátal, Perfectly ordered graphs, in Topics on Perfect Graphs. North Holland Math. Stud. 88, Annals Discrete Math. 21 (1984) 63-65. Zbl0559.05055MR778750
  9. [9] E.G. Coffman Jr., M.G. Garey, D.S. Johnson et A.S. Lapaugh, Scheduling file transfers. SIAM J. Comput. 14 (1985) 744-780. Zbl0604.68039MR795943
  10. [10] O. Coudert, Exact Coloring of Real-Life Graphs is Easy, in Proc. of 34th ACM/IEEE Design Automation Conf. ACM Press, New York (1997) 121-126. 
  11. [11] N. Dubois et D. de Werra, EPCOT: An Efficient Procedure for Coloring Optimally with Tabu Search. Comput. Math. Appl. 25 (1993) 35-45. Zbl0798.68128MR1213528
  12. [12] K. Easton, G. Nemhauser et M. Trick, The traveling tournament problem: description and benchmarks. GSIA, Carnegie Mellon University (2002). Zbl1067.68627
  13. [13] C. Fleurent et J.A. Ferland, Genetic and Hybrid Algorithms for Graph Coloring, édité par G. Laporte et I.H. Osman (éds). Metaheuristics in Combinatorial Optimization, Ann. Oper. Res. 63 (1996) 437-461. Zbl0851.90095
  14. [14] M.G. Garey et D.S. Johnson, The complexity of near-optimal graph coloring. J. ACM 23 (1976) 43-49. Zbl0322.05111MR426496
  15. [15] M.G. Garey, D.S. Johnson et L. Stockmeyer, Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1 (1976) 237-267. Zbl0338.05120MR411240
  16. [16] F. Glover et M. Laguna, Tabu Search. Kluwer Academic Publ. (1997). Zbl0930.90083MR1665424
  17. [17] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1984). Zbl0541.05054
  18. [18] M. Grötschel, L. Lovasz et A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, Berlin (1988). Zbl0634.05001MR936633
  19. [19] M.M. Halldórsson, A still better performance guarantee for approximate graph coloring. Inform. Process. Lett. 45 (1993) 19-23. Zbl0768.68043MR1207010
  20. [20] P. Hansen, A. Hertz et J. Kuplinsky, Bounded Vertex Colorings of Graphs. Discrete Math. 111 (1993) 305-312. Zbl0782.05032MR1210106
  21. [21] P. Hansen, J. Kuplinsky et D. de Werra, Mixed Graph Coloring. Math. Meth. Oper. Res. 45 (1997) 145-160. Zbl0880.90072MR1435900
  22. [22] A.J.W. Hilton et D. de Werra, A sufficient condition for equitable edge-colourings of simple graphs. Discrete Math. 128 (1994) 179-201. Zbl0798.05022MR1271864
  23. [23] E.L. Lawler, Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York (1976). Zbl0413.90040MR439106
  24. [24] F. Leighton, A Graph Coloring Algorithm for Large Scheduling Problems. J. Res. National Bureau Standards 84 (1979) 742-774. Zbl0437.68021MR555214
  25. [25] M. Middendorf et F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs, Discrete Mathematics 80 (1990) 327-333. Zbl0706.68058MR1049253
  26. [26] A. Pnueli, A. Lempel et S. Even, Transitive orientation of graphs and identification of permutation graphs. Canadian J. Math. 23 (1971) 160-175. Zbl0204.24604MR292717
  27. [27] F.S. Roberts, Discrete Mathematical Models. Prentice-Hall, Englewood Cliffs (1976). Zbl0363.90002
  28. [28] Zs. Tuza, Graph colorings with local constraints – a survey, Discussiones Mathematicae – Graph Theory 17 (1997) 161-228. Zbl0923.05027
  29. [29] V.G. Vizing, On an estimate of the chromatic class of a p -graph (en russe), Metody Discret Analiz. 3 (1964) 25-30. MR180505
  30. [30] D.J.A. Welsh et M.B. Powell, An upper bound on the chromatic number of a graph and its application to timetabling problems, Computer J. 10 (1967) 85-87. Zbl0147.15206
  31. [31] D. de Werra, Some models of graphs for scheduling sports competitions, Discrete Applied Mathematics 21 (1988) 47-65. Zbl0656.90060MR953415
  32. [32] D. de Werra, The combinatorics of timetabling, European Journal of Operational Research 96 (1997) 504-513. Zbl0917.90190
  33. [33] D. de Werra, On a multiconstrained model for chromatic scheduling, Discrete Applied Mathematics 94 (1999) 171-180. Zbl0940.90030MR1682165
  34. [34] D. de Werra, Ch. Eisenbeis, S. Lelait et B. Marmol, On a graph-theoretical model for cyclic register allocation, Discrete Applied Mathematics 93 (1999) 191-203. Zbl0946.68026MR1700194
  35. [35] D. de Werra et Y. Gay, Chromatic scheduling and frequency assignment, Discrete Applied Mathematics 49 (1994) 165-174. Zbl0801.90067MR1272486
  36. [36] D. de Werra et A. Hertz, Consecutive colorings of graphs, Zeischrift für Operations Research 32 (1988) 1-8. Zbl0633.05027MR932719
  37. [37] D. de Werra et D. Kobler, Coloration et ordonnencement chromatique, ORWP 00/04, Ecole Polytechnique Fédérale de Lausanne, 2000. 
  38. [38] X. Zhou et T. Nishizeki, Graph Coloring Algorithms, IEICE Trans. on Information and Systems E83-D (2000) 407-417. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.