An optimum design problem in magnetostatics
Antoine Henrot; Grégory Villemin
- Volume: 36, Issue: 2, page 223-239
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topHenrot, Antoine, and Villemin, Grégory. "An optimum design problem in magnetostatics." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.2 (2002): 223-239. <http://eudml.org/doc/245598>.
@article{Henrot2002,
abstract = {In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.},
author = {Henrot, Antoine, Villemin, Grégory},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {shape optimization; optimum design; magnet; numerical examples},
language = {eng},
number = {2},
pages = {223-239},
publisher = {EDP-Sciences},
title = {An optimum design problem in magnetostatics},
url = {http://eudml.org/doc/245598},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Henrot, Antoine
AU - Villemin, Grégory
TI - An optimum design problem in magnetostatics
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 2
SP - 223
EP - 239
AB - In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.
LA - eng
KW - shape optimization; optimum design; magnet; numerical examples
UR - http://eudml.org/doc/245598
ER -
References
top- [1] S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand Math Studies (1965). Zbl0142.37401MR178246
- [2] J. Baranger, Analyse Numérique. Hermann, Paris (1991). Zbl0757.65001
- [3] D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975) 189–289. Zbl0317.49005
- [4] D. Chenais, Sur une famille de variétés à bord lipschitziennes, application à un problème d’identification de domaine. Ann. Inst. Fourier (Grenoble) 4 (1977) 201–231. Zbl0333.46020
- [5] R. Dautray and J.L. Lions (Eds.), Analyse mathématique et calcul numérique, Vol. I and II. Masson, Paris (1984).
- [6] J.E. Dennis and R.B. Schnabel, Numerical Methods for unconstrained optimization. Prentice Hall (1983). Zbl0579.65058
- [7] E. Durand, Magnétostatique. Masson, Paris (1968). Zbl0053.15404
- [8] A. Henrot and M. Pierre, Optimisation de forme (to appear).
- [9] M. Pierre and J.R. Roche, Computation of free sufaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur. J. Mech. B Fluids 10 (1991) 489–500. Zbl0741.76095
- [10] M. Pierre and J.R. Roche, Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math. 65 (1993) 203–217. Zbl0792.65096
- [11] O. Pironneau, Optimal shape design for elliptic systems. Springer Series in Computational Physics. Springer, New York (1984). Zbl0534.49001MR725856
- [12] J. Simon, Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980) 649–687. Zbl0471.35077
- [13] J. Simon, Variations with respect to domain for Neumann condition. Proceedings of the 1986 IFAC Congress at Pasadena “Control of Distributed Parameter Systems”.
- [14] J. Sokolowski and J.P. Zolesio, Introduction to shape optimization: shape sensitity analysis. Springer Series in Computational Mathematics, Vol. 10, Springer, Berlin (1992). Zbl0761.73003MR1215733
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.