Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands

Nicola Fusco[1]; Virginia De Cicco; Micol Amar

  • [1] Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy;

ESAIM: Control, Optimisation and Calculus of Variations (2008)

  • Volume: 14, Issue: 3, page 456-477
  • ISSN: 1292-8119

Abstract

top
New L 1 -lower semicontinuity and relaxation results for integral functionals defined in BV( Ω ) are proved, under a very weak dependence of the integrand with respect to the spatial variable x . More precisely, only the lower semicontinuity in the sense of the 1 -capacity is assumed in order to obtain the lower semicontinuity of the functional. This condition is satisfied, for instance, by the lower approximate limit of the integrand, if it is BV with respect to x . Under this further BV dependence, a representation formula for the relaxed functional is also obtained.

How to cite

top

Fusco, Nicola, Cicco, Virginia De, and Amar, Micol. "Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands." ESAIM: Control, Optimisation and Calculus of Variations 14.3 (2008): 456-477. <http://eudml.org/doc/245653>.

@article{Fusco2008,
abstract = {New $L^1$-lower semicontinuity and relaxation results for integral functionals defined in BV($\Omega $) are proved, under a very weak dependence of the integrand with respect to the spatial variable $x$. More precisely, only the lower semicontinuity in the sense of the $1$-capacity is assumed in order to obtain the lower semicontinuity of the functional. This condition is satisfied, for instance, by the lower approximate limit of the integrand, if it is BV with respect to $x$. Under this further BV dependence, a representation formula for the relaxed functional is also obtained.},
affiliation = {Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Complesso di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy;},
author = {Fusco, Nicola, Cicco, Virginia De, Amar, Micol},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {semicontinuity; relaxation; BV functions; capacity},
language = {eng},
number = {3},
pages = {456-477},
publisher = {EDP-Sciences},
title = {Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands},
url = {http://eudml.org/doc/245653},
volume = {14},
year = {2008},
}

TY - JOUR
AU - Fusco, Nicola
AU - Cicco, Virginia De
AU - Amar, Micol
TI - Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2008
PB - EDP-Sciences
VL - 14
IS - 3
SP - 456
EP - 477
AB - New $L^1$-lower semicontinuity and relaxation results for integral functionals defined in BV($\Omega $) are proved, under a very weak dependence of the integrand with respect to the spatial variable $x$. More precisely, only the lower semicontinuity in the sense of the $1$-capacity is assumed in order to obtain the lower semicontinuity of the functional. This condition is satisfied, for instance, by the lower approximate limit of the integrand, if it is BV with respect to $x$. Under this further BV dependence, a representation formula for the relaxed functional is also obtained.
LA - eng
KW - semicontinuity; relaxation; BV functions; capacity
UR - http://eudml.org/doc/245653
ER -

References

top
  1. [1] M. Amar, and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincaré 11 (1994) 91–133. Zbl0842.49016MR1259102
  2. [2] M. Amar and V. De Cicco, Relaxation in B V for a class of functionals without continuity assumptions. NoDEA Nonlinear Differential Equations Appl. (to appear). Zbl1153.49016MR2408343
  3. [3] M. Amar, V. De Cicco and N. Fusco, A relaxation result in BV for integral functionals with discontinuous integrands. ESAIM: COCV 13 (2007) 396–412. Zbl1330.49008MR2306643
  4. [4] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, New York (2000). Zbl0957.49001MR1857292
  5. [5] G. Anzellotti, G. Buttazzo and G. Dal Maso, Dirichlet problem for demi-coercive functionals. Nonlinear Anal. 10 (1986) 603–613. Zbl0612.49008MR844989
  6. [6] G. Bouchitté and M. Valadier, Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80 (1988) 398–420. Zbl0662.46009MR961907
  7. [7] G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation. Arch. Rat. Mech. Anal. 145 (1998) 51–98. Zbl0921.49004MR1656477
  8. [8] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes in Math., Longman, Harlow (1989). Zbl0669.49005
  9. [9] M. Carriero, G. Dal Maso, A. Leaci and E. Pascali, Relaxation of the non-parametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988) 359–396. Zbl0617.49018MR978576
  10. [10] G. Dal Maso, Integral representation on B V ( Ω ) of Γ -limits of variational integrals. Manuscripta Math. 30 (1980) 387–416. Zbl0435.49016MR567216
  11. [11] G. Dal Maso, On the integral representation of certain local functionals. Ricerche di Matematica 32 (1983) 85–113. Zbl0543.49001MR740203
  12. [12] G. Dal Maso, An Introduction to Γ -convergence. Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
  13. [13] V. De Cicco and G. Leoni, A chain rule in L 1 ( div ; Ω ) and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 19 (2004) 23–51. Zbl1056.49019MR2027846
  14. [14] V. De Cicco, N. Fusco and A. Verde, On L 1 -lower semicontinuity in B V ( Ω ) . J. Convex Analysis 12 (2005) 173–185. Zbl1115.49011MR2135805
  15. [15] V. De Cicco, N. Fusco and A. Verde, A chain rule formula in B V ( Ω ) and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 28 (2007) 427–447. Zbl1136.49011MR2293980
  16. [16] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842–850. Zbl0339.49005MR448194
  17. [17] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63–101. 
  18. [18] H. Federer and W.P. Ziemer, The Lebesgue set of a function whose distribution derivatives are p -th power summable. Indiana Un. Math. J. 22 (1972) 139–158. Zbl0238.28015MR435361
  19. [19] I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Royal Soc. Edinb., Sect. A, Math. 131 (2001) 519–565. Zbl1003.49015MR1838501
  20. [20] I. Fonsecaand S. M u ¨ ller, Quasi-convex integrands and lower semicontinuity in L 1 . SIAM J. Math. Anal. 23 (1992) 1081–1098. Zbl0764.49012MR1177778
  21. [21] I. Fonsecaand S. M u ¨ ller, Relaxation of quasiconvex functionals in BV ( Ω , p ) for integrands f ( x , u , u ) . Arch. Rat. Mech. Anal. 123 (1993) 1–49. Zbl0788.49039MR1218685
  22. [22] N. Fusco, F. Giannetti and A. Verde, A remark on the L 1 -lower semicontinuity for integral functionals in BV. Manuscripta Math. 112 (2003) 313–323. Zbl1030.49014MR2067041
  23. [23] N. Fusco, M. Gori and F. Maggi, A remark on Serrin’s Theorem. NoDEA Nonlinear Differential Equations Appl. 13 (2006) 425–433. Zbl1215.49024MR2314327
  24. [24] M. Gori and F. Maggi, The common root of the geometric conditions in Serrin’s semicontinuity theorem. Ann. Mat. Pura Appl. 184 (2005) 95–114. Zbl1164.49004MR2128096
  25. [25] M. Gori, F. Maggi and P. Marcellini, On some sharp conditions for lower semicontinuity in L 1 . Diff. Int. Eq. 16 (2003) 51–76. Zbl1028.49012MR1948872
  26. [26] F. Maggi, On the relaxation on BV of certain non coercive integral functionals. J. Convex Anal. 10 (2003) 477–489. Zbl1084.49015MR2044431
  27. [27] M. Miranda, Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa 18 (1964) 515–542. Zbl0152.24402MR174706
  28. [28] Y.G. Reshetnyak, Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 1039–1045. Zbl0176.44402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.