Spatial heterogeneity in 3D-2D dimensional reduction
Jean-François Babadjian; Gilles A. Francfort
ESAIM: Control, Optimisation and Calculus of Variations (2005)
- Volume: 11, Issue: 1, page 139-160
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. Acerbi and N. Fusco, Semicontinuity results in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1984) 125–145. Zbl0565.49010
- [2] M. Bocea and I. Fonseca, Equi-integrability results for 3D-2D dimension reduction problems. ESAIM: COCV 7 (2002) 443–470. Zbl1044.49010
- [3] G. Bouchitté, I. Fonseca and M.L. Mascarenhas, Bending moment in membrane theory. J. Elasticity 73 (2003) 75–99. Zbl1059.74034
- [4] A. Braides, personal communication.
- [5] A. Braides and A. Defranceschi, Homogenization of multiple integrals. Oxford lectures Ser. Math. Appl. Clarendon Press, Oxford (1998). Zbl0911.49010MR1684713
- [6] A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J. 49 (2000) 1367–1404. Zbl0987.35020
- [7] B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin (1988). Zbl0703.49001MR2361288
- [8] G. Dal Maso, An introduction to -convergence. Birkhaüser, Boston (1993). Zbl0816.49001MR1201152
- [9] I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Gauthiers-Villars, Paris (1974). Zbl0281.49001MR463993
- [10] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Boca Raton, CRC Press (1992). Zbl0804.28001MR1158660
- [11] D. Fox, A. Raoult and J.C. Simo, A justification of nonlinear properly invariant plate theories. Arch. Rat. Mech. Anal. 25 (1992) 157–199. Zbl0789.73039
- [12] G. Friesecke, R.D. James and S. Müller, Rigorous derivation of nonlinear plate theory and geometric rigidity. C.R. Acad. Sci. Paris, Série I 334 (2001) 173–178. Zbl1012.74043
- [13] G. Friesecke, R.D. James and S. Müller, A Theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461–1506. Zbl1021.74024
- [14] G. Friesecke, R.D. James and S. Müller, The Föppl-von Kármán plate theory as a low energy -limit of nonlinear elasticity. C.R. Acad. Sci. Paris, Série I 335 (2002) 201–206. Zbl1041.74043
- [15] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549–578. Zbl0847.73025