Static hedging of barrier options with a smile : an inverse problem

Claude Bardos; Raphaël Douady; Andrei Fursikov

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 8, page 127-142
  • ISSN: 1292-8119

Abstract

top
Let L be a parabolic second order differential operator on the domain Π ¯ = 0 , T × . Given a function u ^ : R and x ^ > 0 such that the support of u ^ is contained in ( - , - x ^ ] , we let y ^ : Π ¯ be the solution to the equation: L y ^ = 0 , y ^ | { 0 } × = u ^ . Given positive bounds 0 < x 0 < x 1 , we seek a function u with support in x 0 , x 1 such that the corresponding solution y satisfies: y ( t , 0 ) = y ^ ( t , 0 ) t 0 , T . We prove in this article that, under some regularity conditions on the coefficients of L , continuous solutions are unique and dense in the sense that y ^ | [ 0 , T ] × { 0 } can be C 0 -approximated, but an exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the generalised Black–Scholes framework with a combination of European options, as stated by Carr et al. in [6].

How to cite

top

Bardos, Claude, Douady, Raphaël, and Fursikov, Andrei. "Static hedging of barrier options with a smile : an inverse problem." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 127-142. <http://eudml.org/doc/245707>.

@article{Bardos2002,
abstract = {Let $L$ be a parabolic second order differential operator on the domain $\bar\{\Pi \}=\left[ 0,T\right] \times \{\mathbb \{R\}\}.$ Given a function $\hat\{u\}:\{\mathbb \{R\}\rightarrow R\}$ and $\hat\{x\}&gt;0$ such that the support of $\hat\{u\}$ is contained in $(-\infty ,-\hat\{x\}]$, we let $\hat\{y\}:\bar\{\Pi \}\rightarrow \{\mathbb \{R\}\}$ be the solution to the equation:\[ L\hat\{y\}=0,\quad \hat\{y\}|\_\{\lbrace 0\rbrace \times \{\mathbb \{R\}\}\}=\hat\{u\} . \]Given positive bounds $0&lt;x_\{0\}&lt;x_\{1\},$ we seek a function $u$ with support in $\left[ x_\{0\},x_\{1\}\right] $ such that the corresponding solution $y$ satisfies:\[ y(t,0)=\hat\{y\}(t,0)\quad \quad \forall t\in \left[ 0,T\right] . \]We prove in this article that, under some regularity conditions on the coefficients of $L,$ continuous solutions are unique and dense in the sense that $\hat\{y\}|_\{[0,T]\times \lbrace 0\rbrace \}$ can be $C^\{0\}$-approximated, but an exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the generalised Black–Scholes framework with a combination of European options, as stated by Carr et al. in [6].},
author = {Bardos, Claude, Douady, Raphaël, Fursikov, Andrei},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {inverse problems; Carleman estimates; barrier option hedging; replication},
language = {eng},
pages = {127-142},
publisher = {EDP-Sciences},
title = {Static hedging of barrier options with a smile : an inverse problem},
url = {http://eudml.org/doc/245707},
volume = {8},
year = {2002},
}

TY - JOUR
AU - Bardos, Claude
AU - Douady, Raphaël
AU - Fursikov, Andrei
TI - Static hedging of barrier options with a smile : an inverse problem
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 127
EP - 142
AB - Let $L$ be a parabolic second order differential operator on the domain $\bar{\Pi }=\left[ 0,T\right] \times {\mathbb {R}}.$ Given a function $\hat{u}:{\mathbb {R}\rightarrow R}$ and $\hat{x}&gt;0$ such that the support of $\hat{u}$ is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi }\rightarrow {\mathbb {R}}$ be the solution to the equation:\[ L\hat{y}=0,\quad \hat{y}|_{\lbrace 0\rbrace \times {\mathbb {R}}}=\hat{u} . \]Given positive bounds $0&lt;x_{0}&lt;x_{1},$ we seek a function $u$ with support in $\left[ x_{0},x_{1}\right] $ such that the corresponding solution $y$ satisfies:\[ y(t,0)=\hat{y}(t,0)\quad \quad \forall t\in \left[ 0,T\right] . \]We prove in this article that, under some regularity conditions on the coefficients of $L,$ continuous solutions are unique and dense in the sense that $\hat{y}|_{[0,T]\times \lbrace 0\rbrace }$ can be $C^{0}$-approximated, but an exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the generalised Black–Scholes framework with a combination of European options, as stated by Carr et al. in [6].
LA - eng
KW - inverse problems; Carleman estimates; barrier option hedging; replication
UR - http://eudml.org/doc/245707
ER -

References

top
  1. [1] L. Andersen, J. Andreasen and D. Eliezer, Static Replication of Barrier Options: Some General Results. Preprint Gen. Re Fin. Prod. (2000). 
  2. [2] M. Avellaneda and A. Paras, Managing the Volatility Risk of Portfolio of Derivative Securities: The Lagrangian Uncertain Volatility Model. Appl. Math. Finance 3 (1996) 21-52. Zbl1097.91514
  3. [3] C. Bardos, R. Douady and A. Fursikov, Static Hedging of Barrier Options with a Smile: An Inverse Problem, Preprint CMLA No. 9810. École Normale Supérieure de Cachan (1998). Zbl1063.91028
  4. [4] F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities. J. Polit. Econ. 81 (1973) 637-654. Zbl1092.91524
  5. [5] P. Carr and A. Chou, Breaking Barriers. RISK (1997) 139-145. 
  6. [6] P. Carr, K. Ellis and V. Gupta, Static Hedging of Exotic Options. J. Finance (1998) 1165-1190. 
  7. [7] M.H. Davis, V.G. Panas and T. Zariphopoulou, European Option Pricing with Transaction Costs. SIAM J. Control Optim. 3 (1993) 470-493. Zbl0779.90011MR1205985
  8. [8] E. Derman and I. Kani, Riding on a Smile. Risk Mag. (1994) 32-39. 
  9. [9] E. Derman and I. Kani, Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility. Int. J. Theor. Appl. Finance 1 (1998) 61-110. Zbl0908.90009
  10. [10] R. Douady, Closed Form Formulas for Exotic Options and their Lifetime Distribution. Int. J. Theor. Appl. Finance 2 (1998) 17-42. Zbl1153.91487MR1713819
  11. [11] N. Dubourg, Couverture dynamique en présence d’imperfections, Ph.D. Thesis. Univ. Paris I (1997). 
  12. [12] B. Dupire, Pricing and Hedging with Smiles in Mathematics of Derivative Securities, edited by M.A.H. Dempster and S.R. Pliska. Cambridge Univ. Press, Cambridge (1997) 103-111. Zbl0913.90012MR1491370
  13. [13] B. Dupire, A Unified Theory of Volatility, Preprint. Paribas Capital Markets (1995). 
  14. [14] A. Friedman, Partial differential equations of parabolic type. Prentice-hall, Inc. Englewood Cliffs, N.Y. (1964). Zbl0144.34903MR181836
  15. [15] A.V. Fursikov, Lagrange principle for problems of optimal control of ill-posed or singular distributed systems. J. Math. Pures Appl. 71 (1992) 139-194. Zbl0829.49001MR1170249
  16. [16] A.V. Fursikov and O.Yu. Imanuvilov, On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse 11 (1993) 205–232. Zbl0925.93416
  17. [17] A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of two dimensional Navier–Stokes system with control on the part of the boundary. Math. Sbornik. 187 (1996). 
  18. [18] L. Hörmander, Linear partial differential operators. Springer-Verlag, Berlin (1963). Zbl0108.09301MR404822
  19. [19] N. El Karoui, Évaluation et couverture des options exotiques, Working paper. Univ. Paris VI (1997). 
  20. [20] R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications. Dunod, Paris (1967). Zbl0159.20803MR232549
  21. [21] R.C. Merton, Theory of Rational Option Pricing. Bell J. Econ. Manag. Sci. 4 (1973) 141-183. Zbl1257.91043MR496534
  22. [22] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod Gauthier-Villars, Paris (1968). Zbl0179.41801MR244606
  23. [23] M. Rubinstein, Exotic Options, Finance Working Paper No. 220. U.C. Berkeley (1991). 
  24. [24] P.O. Shorygin, On the Controllability Problem Arising in Financial Mathematics. J. Dynam. Control. Syst. 6 (2000) 353-363. Zbl1063.93009MR1763674
  25. [25] N. Taleb, Dynamic Hedging: Managing Vanilla and Exotic Options. J. Wiley & Sons, New York (1997). 
  26. [26] D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. 75 (1996) 367-408. Zbl0896.35023MR1411157
  27. [27] M.E. Taylor, Partial Differential Equations II. Springer-Verlag, Berlin (1991). Related papers not cited in the article Zbl0869.35004
  28. [28] P. Acworth, Pricing and Hedging Barrier and Forward Start Options Using Static Replication, Working paper. ING Barings (1997). 
  29. [29] S. Allen and O. Padovani, Risk Management Using Static Hedging, Working paper. Courant Institute, N.Y.U. (2001). 
  30. [30] L. Andersen and J. Andreasen, Static Barriers. RISK (2000) 120-122. 
  31. [31] S. Aparicio and L. Clewlow, A Comparison of Alternative Methods for Hedging Exotic Options, Working paper. FORC (1997). 
  32. [32] A. Bhandari, Static Hedging: A Genetic Algorithms Approach. Working paper (1999). 
  33. [33] J. Bowie and P. Carr, Static Simplicity. RISK (1994) 44-50. 
  34. [34] H. Brown, D. Hobson and C. Rogers, Robust Hedging of Barrier Options. Math. Finance 11 (2000) 285-314. Zbl1047.91024MR1839367
  35. [35] P. Carr and J. Picron, Static Hedging of Timing Risk. J. Derivatives (1999) 57-66. 
  36. [36] P. Carr and A. Chou, Static Hedging of Complex Barrier Options, Working paper. Courant Institute, N.Y.U. (1998). 
  37. [37] A. Chou and G. Grigoriev, A Uniform Approach to Static Replication. J. Risk Fall (1998) 73-86. 
  38. [38] M. Davis, W. Schachermayer and R. Tompkins, Pricing, No-arbitrage Bounds and Robust Hedging of Installment Options, Working paper. Tech. Univ. Vienna, Austria (2000). MR1870017
  39. [39] E. Derman, D. Ergener and I. Kani, Forever Hedged RISK (1995) 139-145. 
  40. [40] E. Derman, D. Ergener and I. Kani, Static Option Replication. J. Derivatives 2 (1995) 78-85. 
  41. [41] N. El Karoui and M. Jeanblanc–Piqué Exotic Options Without Mathematics, Working paper. Univ. Paris VII (1997). 
  42. [42] E. Haug, First...Then...Knock-out Options. Wilmott Mag. (2001). 
  43. [43] E. Haug, Barrier Put-Call Transformations, Working paper. Paloma Partners (1999). 
  44. [44] E. Herzfeld and H. Konishi, Static Replication of Interest Rate Contingent Claims, Master Thesis. M.I.T. (1997). 
  45. [45] D. Hobson, Robust Hedging of the Lookback Option. Finance and Stochastics 2 (1998) 329-347. Zbl0907.90023
  46. [46] P. Jaeckel and R. Rebonato, An Efficien and General Method to Value American-style Equity and FX Options in the Presence of User-defined Smiles and Time-dependent Volatility, Working paper. NatWest (1999). 
  47. [47] G. Koutmos, Financial Risk Management: Dynamic vs. Static Hedging. Global Bus. Econ. Rev. I (1999) 60-75. 
  48. [48] G. Peccati, A Time-space Hedging Theory, Working paper. Univ. Paris VI (2001). 
  49. [49] A. Sbuelz, A General Treatment of Barrier Options and Semi-static Hedges of Double Barrier Options, Working paper. Tilburg Univ. (2000). 
  50. [50] A. Sbuelz, Semi-static Hedging of Double Barrier Options, Working paper. Tilburg Univ. (2000). 
  51. [51] B. Thomas, Exotic Options II in Handbbok of Risk Management, Chap. 4, edited by C. Alexander (1998). 
  52. [52] H. Thomsen, Barrier Options: Evaluation and Hedging, Dissertation. Aarhus Univ. (1998). 
  53. [53] K. Toft and C. Xuan, How Well Can Barrier Options be Hedged by a Static Portfolio of Standard Options? J. Fin. Engrg. 7 (1998) 147-175. 
  54. [54] R. Tompkins, Static vs. Dynamic Hedging of Exotic Options: An Evaluation of Hedge Performance via Simulation. Net Exposure 2 (1997) 1-36. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.