Static hedging of barrier options with a smile : an inverse problem
Claude Bardos; Raphaël Douady; Andrei Fursikov
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 8, page 127-142
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBardos, Claude, Douady, Raphaël, and Fursikov, Andrei. "Static hedging of barrier options with a smile : an inverse problem." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 127-142. <http://eudml.org/doc/245707>.
@article{Bardos2002,
abstract = {Let $L$ be a parabolic second order differential operator on the domain $\bar\{\Pi \}=\left[ 0,T\right] \times \{\mathbb \{R\}\}.$ Given a function $\hat\{u\}:\{\mathbb \{R\}\rightarrow R\}$ and $\hat\{x\}>0$ such that the support of $\hat\{u\}$ is contained in $(-\infty ,-\hat\{x\}]$, we let $\hat\{y\}:\bar\{\Pi \}\rightarrow \{\mathbb \{R\}\}$ be the solution to the equation:\[ L\hat\{y\}=0,\quad \hat\{y\}|\_\{\lbrace 0\rbrace \times \{\mathbb \{R\}\}\}=\hat\{u\} . \]Given positive bounds $0<x_\{0\}<x_\{1\},$ we seek a function $u$ with support in $\left[ x_\{0\},x_\{1\}\right] $ such that the corresponding solution $y$ satisfies:\[ y(t,0)=\hat\{y\}(t,0)\quad \quad \forall t\in \left[ 0,T\right] . \]We prove in this article that, under some regularity conditions on the coefficients of $L,$ continuous solutions are unique and dense in the sense that $\hat\{y\}|_\{[0,T]\times \lbrace 0\rbrace \}$ can be $C^\{0\}$-approximated, but an exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the generalised Black–Scholes framework with a combination of European options, as stated by Carr et al. in [6].},
author = {Bardos, Claude, Douady, Raphaël, Fursikov, Andrei},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {inverse problems; Carleman estimates; barrier option hedging; replication},
language = {eng},
pages = {127-142},
publisher = {EDP-Sciences},
title = {Static hedging of barrier options with a smile : an inverse problem},
url = {http://eudml.org/doc/245707},
volume = {8},
year = {2002},
}
TY - JOUR
AU - Bardos, Claude
AU - Douady, Raphaël
AU - Fursikov, Andrei
TI - Static hedging of barrier options with a smile : an inverse problem
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 127
EP - 142
AB - Let $L$ be a parabolic second order differential operator on the domain $\bar{\Pi }=\left[ 0,T\right] \times {\mathbb {R}}.$ Given a function $\hat{u}:{\mathbb {R}\rightarrow R}$ and $\hat{x}>0$ such that the support of $\hat{u}$ is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi }\rightarrow {\mathbb {R}}$ be the solution to the equation:\[ L\hat{y}=0,\quad \hat{y}|_{\lbrace 0\rbrace \times {\mathbb {R}}}=\hat{u} . \]Given positive bounds $0<x_{0}<x_{1},$ we seek a function $u$ with support in $\left[ x_{0},x_{1}\right] $ such that the corresponding solution $y$ satisfies:\[ y(t,0)=\hat{y}(t,0)\quad \quad \forall t\in \left[ 0,T\right] . \]We prove in this article that, under some regularity conditions on the coefficients of $L,$ continuous solutions are unique and dense in the sense that $\hat{y}|_{[0,T]\times \lbrace 0\rbrace }$ can be $C^{0}$-approximated, but an exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the generalised Black–Scholes framework with a combination of European options, as stated by Carr et al. in [6].
LA - eng
KW - inverse problems; Carleman estimates; barrier option hedging; replication
UR - http://eudml.org/doc/245707
ER -
References
top- [1] L. Andersen, J. Andreasen and D. Eliezer, Static Replication of Barrier Options: Some General Results. Preprint Gen. Re Fin. Prod. (2000).
- [2] M. Avellaneda and A. Paras, Managing the Volatility Risk of Portfolio of Derivative Securities: The Lagrangian Uncertain Volatility Model. Appl. Math. Finance 3 (1996) 21-52. Zbl1097.91514
- [3] C. Bardos, R. Douady and A. Fursikov, Static Hedging of Barrier Options with a Smile: An Inverse Problem, Preprint CMLA No. 9810. École Normale Supérieure de Cachan (1998). Zbl1063.91028
- [4] F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities. J. Polit. Econ. 81 (1973) 637-654. Zbl1092.91524
- [5] P. Carr and A. Chou, Breaking Barriers. RISK (1997) 139-145.
- [6] P. Carr, K. Ellis and V. Gupta, Static Hedging of Exotic Options. J. Finance (1998) 1165-1190.
- [7] M.H. Davis, V.G. Panas and T. Zariphopoulou, European Option Pricing with Transaction Costs. SIAM J. Control Optim. 3 (1993) 470-493. Zbl0779.90011MR1205985
- [8] E. Derman and I. Kani, Riding on a Smile. Risk Mag. (1994) 32-39.
- [9] E. Derman and I. Kani, Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility. Int. J. Theor. Appl. Finance 1 (1998) 61-110. Zbl0908.90009
- [10] R. Douady, Closed Form Formulas for Exotic Options and their Lifetime Distribution. Int. J. Theor. Appl. Finance 2 (1998) 17-42. Zbl1153.91487MR1713819
- [11] N. Dubourg, Couverture dynamique en présence d’imperfections, Ph.D. Thesis. Univ. Paris I (1997).
- [12] B. Dupire, Pricing and Hedging with Smiles in Mathematics of Derivative Securities, edited by M.A.H. Dempster and S.R. Pliska. Cambridge Univ. Press, Cambridge (1997) 103-111. Zbl0913.90012MR1491370
- [13] B. Dupire, A Unified Theory of Volatility, Preprint. Paribas Capital Markets (1995).
- [14] A. Friedman, Partial differential equations of parabolic type. Prentice-hall, Inc. Englewood Cliffs, N.Y. (1964). Zbl0144.34903MR181836
- [15] A.V. Fursikov, Lagrange principle for problems of optimal control of ill-posed or singular distributed systems. J. Math. Pures Appl. 71 (1992) 139-194. Zbl0829.49001MR1170249
- [16] A.V. Fursikov and O.Yu. Imanuvilov, On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse 11 (1993) 205–232. Zbl0925.93416
- [17] A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of two dimensional Navier–Stokes system with control on the part of the boundary. Math. Sbornik. 187 (1996).
- [18] L. Hörmander, Linear partial differential operators. Springer-Verlag, Berlin (1963). Zbl0108.09301MR404822
- [19] N. El Karoui, Évaluation et couverture des options exotiques, Working paper. Univ. Paris VI (1997).
- [20] R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications. Dunod, Paris (1967). Zbl0159.20803MR232549
- [21] R.C. Merton, Theory of Rational Option Pricing. Bell J. Econ. Manag. Sci. 4 (1973) 141-183. Zbl1257.91043MR496534
- [22] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod Gauthier-Villars, Paris (1968). Zbl0179.41801MR244606
- [23] M. Rubinstein, Exotic Options, Finance Working Paper No. 220. U.C. Berkeley (1991).
- [24] P.O. Shorygin, On the Controllability Problem Arising in Financial Mathematics. J. Dynam. Control. Syst. 6 (2000) 353-363. Zbl1063.93009MR1763674
- [25] N. Taleb, Dynamic Hedging: Managing Vanilla and Exotic Options. J. Wiley & Sons, New York (1997).
- [26] D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. 75 (1996) 367-408. Zbl0896.35023MR1411157
- [27] M.E. Taylor, Partial Differential Equations II. Springer-Verlag, Berlin (1991). Related papers not cited in the article Zbl0869.35004
- [28] P. Acworth, Pricing and Hedging Barrier and Forward Start Options Using Static Replication, Working paper. ING Barings (1997).
- [29] S. Allen and O. Padovani, Risk Management Using Static Hedging, Working paper. Courant Institute, N.Y.U. (2001).
- [30] L. Andersen and J. Andreasen, Static Barriers. RISK (2000) 120-122.
- [31] S. Aparicio and L. Clewlow, A Comparison of Alternative Methods for Hedging Exotic Options, Working paper. FORC (1997).
- [32] A. Bhandari, Static Hedging: A Genetic Algorithms Approach. Working paper (1999).
- [33] J. Bowie and P. Carr, Static Simplicity. RISK (1994) 44-50.
- [34] H. Brown, D. Hobson and C. Rogers, Robust Hedging of Barrier Options. Math. Finance 11 (2000) 285-314. Zbl1047.91024MR1839367
- [35] P. Carr and J. Picron, Static Hedging of Timing Risk. J. Derivatives (1999) 57-66.
- [36] P. Carr and A. Chou, Static Hedging of Complex Barrier Options, Working paper. Courant Institute, N.Y.U. (1998).
- [37] A. Chou and G. Grigoriev, A Uniform Approach to Static Replication. J. Risk Fall (1998) 73-86.
- [38] M. Davis, W. Schachermayer and R. Tompkins, Pricing, No-arbitrage Bounds and Robust Hedging of Installment Options, Working paper. Tech. Univ. Vienna, Austria (2000). MR1870017
- [39] E. Derman, D. Ergener and I. Kani, Forever Hedged RISK (1995) 139-145.
- [40] E. Derman, D. Ergener and I. Kani, Static Option Replication. J. Derivatives 2 (1995) 78-85.
- [41] N. El Karoui and M. Jeanblanc–Piqué Exotic Options Without Mathematics, Working paper. Univ. Paris VII (1997).
- [42] E. Haug, First...Then...Knock-out Options. Wilmott Mag. (2001).
- [43] E. Haug, Barrier Put-Call Transformations, Working paper. Paloma Partners (1999).
- [44] E. Herzfeld and H. Konishi, Static Replication of Interest Rate Contingent Claims, Master Thesis. M.I.T. (1997).
- [45] D. Hobson, Robust Hedging of the Lookback Option. Finance and Stochastics 2 (1998) 329-347. Zbl0907.90023
- [46] P. Jaeckel and R. Rebonato, An Efficien and General Method to Value American-style Equity and FX Options in the Presence of User-defined Smiles and Time-dependent Volatility, Working paper. NatWest (1999).
- [47] G. Koutmos, Financial Risk Management: Dynamic vs. Static Hedging. Global Bus. Econ. Rev. I (1999) 60-75.
- [48] G. Peccati, A Time-space Hedging Theory, Working paper. Univ. Paris VI (2001).
- [49] A. Sbuelz, A General Treatment of Barrier Options and Semi-static Hedges of Double Barrier Options, Working paper. Tilburg Univ. (2000).
- [50] A. Sbuelz, Semi-static Hedging of Double Barrier Options, Working paper. Tilburg Univ. (2000).
- [51] B. Thomas, Exotic Options II in Handbbok of Risk Management, Chap. 4, edited by C. Alexander (1998).
- [52] H. Thomsen, Barrier Options: Evaluation and Hedging, Dissertation. Aarhus Univ. (1998).
- [53] K. Toft and C. Xuan, How Well Can Barrier Options be Hedged by a Static Portfolio of Standard Options? J. Fin. Engrg. 7 (1998) 147-175.
- [54] R. Tompkins, Static vs. Dynamic Hedging of Exotic Options: An Evaluation of Hedge Performance via Simulation. Net Exposure 2 (1997) 1-36.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.