Construction de facettes pour le polytope du sac-à-dos quadratique en 0-1
RAIRO - Operations Research - Recherche Opérationnelle (2003)
- Volume: 37, Issue: 4, page 249-271
- ISSN: 0399-0559
Access Full Article
topHow to cite
topFaye, Alain, and Boyer, Olivier. "Construction de facettes pour le polytope du sac-à-dos quadratique en 0-1." RAIRO - Operations Research - Recherche Opérationnelle 37.4 (2003): 249-271. <http://eudml.org/doc/245825>.
@article{Faye2003,
author = {Faye, Alain, Boyer, Olivier},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {fre},
number = {4},
pages = {249-271},
publisher = {EDP-Sciences},
title = {Construction de facettes pour le polytope du sac-à-dos quadratique en 0-1},
url = {http://eudml.org/doc/245825},
volume = {37},
year = {2003},
}
TY - JOUR
AU - Faye, Alain
AU - Boyer, Olivier
TI - Construction de facettes pour le polytope du sac-à-dos quadratique en 0-1
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 4
SP - 249
EP - 271
LA - fre
UR - http://eudml.org/doc/245825
ER -
References
top- [1] W.P. Adams et H.D. Sherali, A tight linearization and an algorithm for zero-one quadratic programming problem. Manage. Sci. 32 (1986) 1274-1289. Zbl0623.90054MR861711
- [2] A. Billionnet et F. Calmels, Linear programming for the 0-1 quadratic knapsack problem. Eur. J. Oper. Res. 92 (1996) 310-325. Zbl0912.90221
- [3] A. Billionnet, A. Faye et E. Soutif, A new upper bound for the 0-1 quadratic knapsack problem. Eur. J. Oper. Res. 112 (1999) 664-672. Zbl0933.90049
- [4] P. Chaillou, P. Hansen et Y. Mahieu, Best network flow bounds for the quadratic knapsack problem. Lect. Notes Math. 1403 (1986) 226-235. Zbl0678.90061
- [5] S. Elloumi, A. Faye et E. Soutif, Decomposition and linearization for 0-1 quadratic programming. Ann. Oper. Res. 99 (2000) 79-93. Zbl0990.90073MR1837733
- [6] L.F. Escudero, A. Garin et G. Pérez, An O(nlogn) procedure for identifying facets of the knapsack polytope. Oper. Res. Lett. 31 (2003) 211-218. Zbl1042.90035MR1967292
- [7] C. Helmberg, F. Rendl et R. Weismantel, A semidefinite programming approach to the quadratic knapsack problem. J. Comb. Optim. 4 (2000) 197-215. Zbl0970.90075MR1772826
- [8] E.J. Johnson, A. Mehrotra et G.L. Nemhauser, Min-cut clustering. Math. Program. 62 (1993) 133-152. Zbl0807.90117MR1247611
- [9] A. Mehrotra, Cardinality constrained Boolean quadratic polytope. Discrete Appl. Math. 79 (1997) 137-154. Zbl0898.90092MR1478248
- [10] P. Michelon et L. Veilleux, Lagrangean methods for the 0-1 quadratic knapsack problem. Eur. J. Oper. Res. 92 (1996) 326-341. Zbl0912.90222
- [11] G.L Nemhauser et L.A. Wolsey, Integer and Combinatorial Optimization. Wiley Intersci. Ser. Discrete Math. Optim. (1988). Zbl0652.90067MR948455
- [12] M. Padberg, The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45 (1989) 139-172. Zbl0675.90056MR1017216
- [13] D.J. Rader, Valid inequalities and facets of the quadratic 0-1 knapsack polytope. Rutcor Research Report 16-97 (1997) 11 p.
- [14] D.J. Rader, Lifting results for the quadratic 0-1 knapsack polytope. Rutcor Research Report 17-97 (1997) 27 p.
- [15] M.G.C. Resende, K.G. Ramakrishnan et Z. Drezner, Computing Lower Bounds for the Quadratic assignment problem with an interior point algorithm for linear programming. Oper. Res. 43 (1995) 781-791. Zbl0843.90068MR1361340
- [16] E. Soutif, Résolution du problème de sac-à-dos quadratique en variables bivalentes. Thèse de doctorat du CNAM Paris (2000).
- [17] E. Zemel, Lifting the facets of zero-one polytopes. Math. Program. 15 (1978) 268-277. Zbl0428.90042MR514612
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.