Page 1 Next

Displaying 1 – 20 of 21

Showing per page

A complete characterization of invariant jointly rank-r convex quadratic forms and applications to composite materials

Vincenzo Nesi, Enrico Rogora (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The theory of compensated compactness of Murat and Tartar links the algebraic condition of rank-r convexity with the analytic condition of weak lower semicontinuity. The former is an algebraic condition and therefore it is, in principle, very easy to use. However, in applications of this theory, the need for an efficient classification of rank-r convex forms arises. In the present paper, we define the concept of extremal 2-forms  and characterize them in the rotationally invariant jointly...

Bloch wave homogenization of linear elasticity system

Sista Sivaji Ganesh, Muthusamy Vanninathan (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a regular Bloch spectrum is not guaranteed. The aim here is to develop all necessary spectral tools to overcome...

Bloch wave homogenization of linear elasticity system

Sista Sivaji Ganesh, Muthusamy Vanninathan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a regular Bloch spectrum is not guaranteed. The aim here is to develop all necessary spectral tools to overcome...

Cell-to-muscle homogenization. Application to a constitutive law for the myocardium

Denis Caillerie, Ayman Mourad, Annie Raoult (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...

Cell-to-Muscle homogenization. Application to a constitutive law for the myocardium

Denis Caillerie, Ayman Mourad, Annie Raoult (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...

Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence

Emmanuel Kwame Essel, Komil Kuliev, Gulchehra Kulieva, Lars-Erik Persson (2010)

Applications of Mathematics

We consider a quasilinear parabolic problem with time dependent coefficients oscillating rapidly in the space variable. The existence and uniqueness results are proved by using Rothe’s method combined with the technique of two-scale convergence. Moreover, we derive a concrete homogenization algorithm for giving a unique and computable approximation of the solution.

Homogenization of the Maxwell Equations: Case II. Nonlinear conductivity

Niklas Wellander (2002)

Applications of Mathematics

The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous...

Is it wise to keep laminating?

Marc Briane, Vincenzo Nesi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the corrector matrix P ε  to the conductivity equations. We show that if P ε  converges weakly to the identity, then for any laminate det P ε 0 at almost every point. This simple property is shown to be false for generic microgeometries if the dimension is greater than two in the work Briane et al. [Arch. Ration. Mech. Anal., to appear]. In two dimensions it holds true for any microgeometry as a corollary of the work in Alessandrini and Nesi [Arch. Ration. Mech. Anal.158 (2001) 155-171]. We use this...

Is it wise to keep laminating ?

Marc Briane, Vincenzo Nesi (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We study the corrector matrix P ϵ to the conductivity equations. We show that if P ϵ converges weakly to the identity, then for any laminate det P ϵ 0 at almost every point. This simple property is shown to be false for generic microgeometries if the dimension is greater than two in the work Briane et al. [Arch. Ration. Mech. Anal., to appear]. In two dimensions it holds true for any microgeometry as a corollary of the work in Alessandrini and Nesi [Arch. Ration. Mech. Anal. 158 (2001) 155-171]. We use this...

Small amplitude homogenization applied to models of non-periodic fibrous materials

David Manceau (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we compare a biomechanics empirical model of the heart fibrous structure to two models obtained by a non-periodic homogenization process. To this end, the two homogenized models are simplified using the small amplitude homogenization procedure of Tartar, both in conduction and in elasticity. A new small amplitude homogenization expansion formula for a mixture of anisotropic elastic materials is also derived and allows us to obtain a third simplified model.

The method of Rothe and two-scale convergence in nonlinear problems

Jiří Vala (2003)

Applications of Mathematics

Modelling of macroscopic behaviour of materials, consisting of several layers or components, cannot avoid their microstructural properties. This article demonstrates how the method of Rothe, described in the book of K. Rektorys The Method of Discretization in Time, together with the two-scale homogenization technique can be applied to the existence and convergence analysis of some strongly nonlinear time-dependent problems of this type.

Vector variational problems and applications to optimal design

Pablo Pedregal (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We examine how the use of typical techniques from non-convex vector variational problems can help in understanding optimal design problems in conductivity. After describing the main ideas of the underlying analysis and providing some standard material in an attempt to make the exposition self-contained, we show how those ideas apply to a typical optimal desing problem with two different conducting materials. Then we examine the equivalent relaxed formulation to end up with a new problem whose numerical...

Vector variational problems and applications to optimal design

Pablo Pedregal (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We examine how the use of typical techniques from non-convex vector variational problems can help in understanding optimal design problems in conductivity. After describing the main ideas of the underlying analysis and providing some standard material in an attempt to make the exposition self-contained, we show how those ideas apply to a typical optimal desing problem with two different conducting materials. Then we examine the equivalent relaxed formulation to end up with a new problem whose numerical...

Currently displaying 1 – 20 of 21

Page 1 Next