Asymmetric heteroclinic double layers
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 8, page 965-1005
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topSchatzman, Michelle. "Asymmetric heteroclinic double layers." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 965-1005. <http://eudml.org/doc/245851>.
@article{Schatzman2002,
abstract = {Let $W$ be a non-negative function of class $\mathrm \{C\}^\{3\}$ from $\mathbb \{R\}^2$ to $\mathbb \{R\}$, which vanishes exactly at two points $\mathbf \{a\}$ and $\mathbf \{b\}$. Let $S^1(\mathbf \{a\},\mathbf \{b\})$ be the set of functions of a real variable which tend to $\mathbf \{a\}$ at $-\infty $ and to $\mathbf \{b\}$ at $+\infty $ and whose one dimensional energy\[ E\_1(v)=\int \_\mathbb \{R\}\bigl [W(v)+\vert v^\{\prime \}\vert ^2/2\bigr ]\,\mathrm \{d\}x \]is finite. Assume that there exist two isolated minimizers $z_+$ and $z_-$ of the energy $E_1$ over $S^1(\mathbf \{a\},\mathbf \{b\})$. Under a mild coercivity condition on the potential $W$ and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at $z_+$ and $z_-$, it is possible to prove that there exists a function $u$ from $\mathbb \{R\}^2$ to itself which satisfies the equation\[ -\Delta u + \mathrm \{D\}W(u)^\sf T=0, \]and the boundary conditions\[ \lim \_\{x\_2\rightarrow +\infty \} u(x\_1,x\_2)=z\_+(x\_1-m\_+),\phantom\{\mathbf \{a\}\} \lim \_\{x\_2\rightarrow -\infty \} u(x\_1,x\_2)=z\_-(x\_1-m\_-), \lim \_\{x\_1\rightarrow -\infty \}u(x\_1,x\_2)=\mathbf \{a\},\phantom\{z\_+(x\_1-m\_+)\} \lim \_\{x\_1\rightarrow +\infty \}u(x\_1,x\_2)=\mathbf \{b\}. \]The above convergences are exponentially fast; the numbers $m_+$ and $m_-$ are unknowns of the problem.},
author = {Schatzman, Michelle},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {heteroclinic connections; Ginzburg–Landau; elliptic systems in unbounded domains; non convex optimization; Ginzburg-Landau; non-convex optimization},
language = {eng},
pages = {965-1005},
publisher = {EDP-Sciences},
title = {Asymmetric heteroclinic double layers},
url = {http://eudml.org/doc/245851},
volume = {8},
year = {2002},
}
TY - JOUR
AU - Schatzman, Michelle
TI - Asymmetric heteroclinic double layers
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 965
EP - 1005
AB - Let $W$ be a non-negative function of class $\mathrm {C}^{3}$ from $\mathbb {R}^2$ to $\mathbb {R}$, which vanishes exactly at two points $\mathbf {a}$ and $\mathbf {b}$. Let $S^1(\mathbf {a},\mathbf {b})$ be the set of functions of a real variable which tend to $\mathbf {a}$ at $-\infty $ and to $\mathbf {b}$ at $+\infty $ and whose one dimensional energy\[ E_1(v)=\int _\mathbb {R}\bigl [W(v)+\vert v^{\prime }\vert ^2/2\bigr ]\,\mathrm {d}x \]is finite. Assume that there exist two isolated minimizers $z_+$ and $z_-$ of the energy $E_1$ over $S^1(\mathbf {a},\mathbf {b})$. Under a mild coercivity condition on the potential $W$ and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at $z_+$ and $z_-$, it is possible to prove that there exists a function $u$ from $\mathbb {R}^2$ to itself which satisfies the equation\[ -\Delta u + \mathrm {D}W(u)^\sf T=0, \]and the boundary conditions\[ \lim _{x_2\rightarrow +\infty } u(x_1,x_2)=z_+(x_1-m_+),\phantom{\mathbf {a}} \lim _{x_2\rightarrow -\infty } u(x_1,x_2)=z_-(x_1-m_-), \lim _{x_1\rightarrow -\infty }u(x_1,x_2)=\mathbf {a},\phantom{z_+(x_1-m_+)} \lim _{x_1\rightarrow +\infty }u(x_1,x_2)=\mathbf {b}. \]The above convergences are exponentially fast; the numbers $m_+$ and $m_-$ are unknowns of the problem.
LA - eng
KW - heteroclinic connections; Ginzburg–Landau; elliptic systems in unbounded domains; non convex optimization; Ginzburg-Landau; non-convex optimization
UR - http://eudml.org/doc/245851
ER -
References
top- [1] S. Alama, L. Bronsard and C. Gui, Stationary layered solutions in for an Allen–Cahn system with multiple well potential. Calc. Var. Partial Diff. Eqs. 5 (1997) 359-390. Zbl0883.35036
- [2] I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 89-102. Zbl0676.49005MR985992
- [3] K. Ishige, The gradient theory of the phase transitions in Cahn–Hilliard fluids with Dirichlet boundary conditions. SIAM J. Math. Anal. 27 (1996) 620-637. Zbl0847.49018
- [4] T. Kato, Perturbation theory for linear operators. Springer-Verlag, Berlin (1995). Reprint of the 1980 edition. Zbl0836.47009MR1335452
- [5] L.D. Landau and E.M. Lifchitz, Physique statistique. Ellipses (1994).
- [6] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). Travaux et Recherches Mathématiques, No. 17. Zbl0165.10801MR247243
- [7] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. Zbl0616.76004MR866718
- [8] L. Modica, Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987) 487-512. Zbl0642.49009MR921549
- [9] N.C. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. Roy. Soc. London Ser. A 429 (1990) 505-532. Zbl0722.49021MR1057968
- [10] M. Reed and B. Simon, Methods of modern mathematical physics. I. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, Second Edition (1980). Functional analysis. Zbl0459.46001MR751959
- [11] P. Sternberg, Vector-valued local minimizers of nonconvex variational problems. Rocky Mountain J. Math. 21 (1991) 799-807. Current directions in nonlinear partial differential equations. Provo, UT (1987). Zbl0737.49009MR1121542
- [12] A.I. Volpert, V.A. Volpert and V.A. Volpert, Traveling wave solutions of parabolic systems. American Mathematical Society, Providence, RI, 1994. Translated from the Russian manuscript by James F. Heyda. Zbl1001.35060MR1297766
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.