Gradient theory of phase transitions with boundary contact energy

Luciano Modica

Annales de l'I.H.P. Analyse non linéaire (1987)

  • Volume: 4, Issue: 5, page 487-512
  • ISSN: 0294-1449

How to cite

top

Modica, Luciano. "Gradient theory of phase transitions with boundary contact energy." Annales de l'I.H.P. Analyse non linéaire 4.5 (1987): 487-512. <http://eudml.org/doc/78141>.

@article{Modica1987,
author = {Modica, Luciano},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {van der Waals-Cahn-Hilliard theory; phase transitions; asymptotic behavior; limit solution; liquid-drop problem},
language = {eng},
number = {5},
pages = {487-512},
publisher = {Gauthier-Villars},
title = {Gradient theory of phase transitions with boundary contact energy},
url = {http://eudml.org/doc/78141},
volume = {4},
year = {1987},
}

TY - JOUR
AU - Modica, Luciano
TI - Gradient theory of phase transitions with boundary contact energy
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1987
PB - Gauthier-Villars
VL - 4
IS - 5
SP - 487
EP - 512
LA - eng
KW - van der Waals-Cahn-Hilliard theory; phase transitions; asymptotic behavior; limit solution; liquid-drop problem
UR - http://eudml.org/doc/78141
ER -

References

top
  1. [1] G. Anzellotti and M. Giaquinta, Funzioni BV e tracce, Rend. Sem. Mat. Univ. Padova, Vol. 60, 1978, pp. 1-22. Zbl0432.46031MR555952
  2. [2] J.W. Cahn, Critical Point Wetting, J. Chem. Phys., Vol. 66, 1977, pp. 3667-3672. 
  3. [3] J.W. Cahn and R.B. Heady, Experimental Test of Classical Nucleation Theory in a Liquid-Liquid Miscibility Gap System, J. Chem. Phys., Vol. 58, 1973, pp. 896-910. 
  4. [4] G. DalMASO and L. MODICA, Nonlinear Stochastic Homogenization, Ann. Mat. Pura Appl., (4), Vol. 144, 1986, pp. 347-389. Zbl0607.49010MR870884
  5. [5] E. Giusti, The Equilibrium Configuration of Liquid Drops, J. Reine Angew. Math., Vol. 331, 1981, pp. 53-63. Zbl0438.76078MR597979
  6. [6] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, Boston, Stuttgart, 1984. Zbl0545.49018MR775682
  7. [7] E. Gonzalez, U. Massari and I. Tamanini, On the Regularity of Boundaries of Sets Minimizing Perimeter with a Volume Constraint, Indiana Univ. Math. J., Vol. 32, 1983, pp. 25-37. Zbl0486.49024MR684753
  8. [8] M.E. Gurtin, Some Results and Conjectures in the Gradient Theory of Phase Transitions, Institute for Mathematics and Its Applications, University of Minnesota, Preprint No. 156, 1985. MR870014
  9. [9] M.E. Gurtin and H. Matano, On the Structure of Equilibrium Phase Transitions within the Gradient Theory of Fluids (to appear). MR950604
  10. [10] L. Modica, Gradient Theory of Phase Transitions and Minimal Interface Criterion, Arch. Rat. Mech. Anal., Vol. 98, 1987, pp. 123-142. Zbl0616.76004MR866718

Citations in EuDML Documents

top
  1. Michelle Schatzman, Asymmetric heteroclinic double layers
  2. Sisto Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids
  3. Giampiero Palatucci, Una classe di problemi di transizione di fase con l'effetto di tensione di linea
  4. Alessandro Turco, François Alouges, Antonio DeSimone, Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model
  5. Michelle Schatzman, Asymmetric heteroclinic double layers
  6. Bernardo Galvão-Sousa, Higher-order phase transitions with line-tension effect
  7. Bernardo Galvão-Sousa, Higher-order phase transitions with line-tension effect
  8. Giovanni Bellettini, Maurizio Paolini, Claudio Verdi, Convex approximations of functionals with curvature
  9. A. Visintin, Introduction to the models of phase transitions
  10. Ľubomír Baňas, Robert Nürnberg, estimates for the Cahn–Hilliard equation with obstacle free energy

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.