Finite element approximations of a glaciology problem
Sum S. Chow; Graham F. Carey; Michael L. Anderson
- Volume: 38, Issue: 5, page 741-756
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topChow, Sum S., Carey, Graham F., and Anderson, Michael L.. "Finite element approximations of a glaciology problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 38.5 (2004): 741-756. <http://eudml.org/doc/245931>.
@article{Chow2004,
abstract = {In this paper we study a model problem describing the movement of a glacier under Glen’s flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395–406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis 29 (1992) 769–780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis 33 (1996) 98–106] and give an analysis of the convergence of the successive approximations used in [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395–406]. Supporting numerical convergence studies are carried out and we also demonstrate the numerical performance of an a posteriori error estimator in adaptive mesh refinement computation of the problem.},
author = {Chow, Sum S., Carey, Graham F., Anderson, Michael L.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Glen’s flow law; non-newtonian fluids; finite element error estimates; successive approximations},
language = {eng},
number = {5},
pages = {741-756},
publisher = {EDP-Sciences},
title = {Finite element approximations of a glaciology problem},
url = {http://eudml.org/doc/245931},
volume = {38},
year = {2004},
}
TY - JOUR
AU - Chow, Sum S.
AU - Carey, Graham F.
AU - Anderson, Michael L.
TI - Finite element approximations of a glaciology problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 5
SP - 741
EP - 756
AB - In this paper we study a model problem describing the movement of a glacier under Glen’s flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395–406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis 29 (1992) 769–780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis 33 (1996) 98–106] and give an analysis of the convergence of the successive approximations used in [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395–406]. Supporting numerical convergence studies are carried out and we also demonstrate the numerical performance of an a posteriori error estimator in adaptive mesh refinement computation of the problem.
LA - eng
KW - Glen’s flow law; non-newtonian fluids; finite element error estimates; successive approximations
UR - http://eudml.org/doc/245931
ER -
References
top- [1] H. Blatter, Velocity and stress fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients. J. Glaciology 41 (1995) 333–344.
- [2] G.F. Carey, Computational Grids: Generation, Adaptation and Solution Strategies. Taylor & Francis (1997). Zbl0955.74001MR1483891
- [3] S.-S. Chow, Finite element error estimates for nonlinear elliptic equations of monotone type. Numer. Math. 54 (1989) 373–393. Zbl0643.65058
- [4] S.-S. Chow, Finite element error estimates for a blast furnace gas flow problem. SIAM J. Numer. Analysis 29 (1992) 769–780. Zbl0749.76040
- [5] S.-S. Chow and G.F. Carey, Numerical approximation of generalized Newtonian fluids using Heindl elements: I. Theoretical estimates. Internat. J. Numer. Methods Fluids 41 (2003) 1085–1118. Zbl1047.76040
- [6] J. Colinge and H. Blatter, Stress and velocity fields in glaciers: Part I. Finite-difference schemes for higher-order glacier models. J. Glaciology 44 (1998) 448–456.
- [7] J. Colinge and J. Rappaz, A strongly nonlinear problem arising in glaciology. ESAIM: M2AN 33 (1999) 395–406. Zbl0946.65115
- [8] J.W. Glen, The Flow Law of Ice, Internat. Assoc. Sci. Hydrology Pub. 47, Symposium at Chamonix 1958 – Physics of the Movement of the Ice (1958) 171–183.
- [9] R. Glowinski and J. Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. ESAIM: M2AN 37 (2003) 175–186. Zbl1046.76002
- [10] W. Han, J. Soren and I. Shimansky, The Kačanov method for some nonlinear problems. Appl. Num. Anal. 24 (1997) 57–79. Zbl0878.65099
- [11] C. Johnson and V. Thomee, Error estimates for a finite element approximation of a minimal surface. Math. Comp. 29 (1975) 343–349. Zbl0302.65086
- [12] W.B. Liu and J.W. Barrett, Finite element approximation of some degenerate monotone quasilinear elliptic systems. SIAM J. Numer. Analysis 33 (1996) 98–106. Zbl0846.65064
- [13] W.S.B. Patterson, The Physics of Glaciers, 2nd edition. Pergamon Press (1981).
- [14] E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B. Nonlinear Monotone Operators, Springer-Verlag (1990). Zbl0684.47029MR1033498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.