A new series of conjectures and open questions in optimization and matrix analysis
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 2, page 454-470
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topHiriart-Urruty, Jean-Baptiste. "A new series of conjectures and open questions in optimization and matrix analysis." ESAIM: Control, Optimisation and Calculus of Variations 15.2 (2009): 454-470. <http://eudml.org/doc/245935>.
@article{Hiriart2009,
abstract = {We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.},
author = {Hiriart-Urruty, Jean-Baptiste},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {convex sets; positive (semi)definite matrices; variational problems; energy functions; global optimization; permanent function; bistochastic matrices; normal matrices},
language = {eng},
number = {2},
pages = {454-470},
publisher = {EDP-Sciences},
title = {A new series of conjectures and open questions in optimization and matrix analysis},
url = {http://eudml.org/doc/245935},
volume = {15},
year = {2009},
}
TY - JOUR
AU - Hiriart-Urruty, Jean-Baptiste
TI - A new series of conjectures and open questions in optimization and matrix analysis
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2009
PB - EDP-Sciences
VL - 15
IS - 2
SP - 454
EP - 470
AB - We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.
LA - eng
KW - convex sets; positive (semi)definite matrices; variational problems; energy functions; global optimization; permanent function; bistochastic matrices; normal matrices
UR - http://eudml.org/doc/245935
ER -
References
top- [1] T. Andreescu, O. Mushkarov and L. Stoyanov, Geometric problems on maxima and minima. Birkhäuser (2006). Zbl1115.00002MR2185951
- [2] M. Atiyah and P. Sutcliffe, The geometry of point particles. Proc. R. Soc. London A 458 (2002) 1089–1115. Zbl1010.58015MR1902577
- [3] M. Atiyah and P. Sutcliffe, Polyhedra in physics, chemistry and geometry. Milan J. Math. 71 (2003) 33–58. Zbl1050.52002MR2120915
- [4] R. Bapat, Mixed discriminants of positive semidefinite matrices. Linear Algebra Appl. 126 (1989) 107–124. Zbl0696.15007MR1040776
- [5] M. Bayart, Épreuve de mathématiques générales du concours d’agrégation de mathématiques 1980. Revue de Mathématiques Spéciales (1980–1981) 220–230. MR633521
- [6] A. Ben Tal, A. Nemirovski and C. Roos, Robust solutions of uncertain quadratic and conic-quadratic problems. SIAM J. Optim. 13 (2002) 535–560. Zbl1026.90065MR1951034
- [7] E. Bendito, A. Carmona, A.M. Encinas and J.M. Gesto, Estimation of Fekete points. J. Comput. Phys. 225 (2007) 2354–2376. Zbl1123.65054MR2349707
- [8] D. Bessis, P. Moussa and M. Villani, Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys. 16 (1975) 2318–2325. Zbl0976.82501MR416396
- [9] R. Bhatia, Matrix analysis. Springer (1997). Zbl0863.15001MR1477662
- [10] J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topological vector spaces. Studia Math. 39 (1971) 59–76. Zbl0214.37702MR313810
- [11] G-S. Cheon and I.M. Wanless, An update on Minc’s survey of open problems involving permanents. Linear Algebra Appl. 403 (2005) 314–342. Zbl1078.15005MR2140290
- [12] H.T. Croft, K.J. Falconer and R.K. Guy, Unsolved problems in geometry. Springer-verlag (1991). Zbl0748.52001MR1107516
- [13] K. Derinkuyu and M. Pinar, On the S-procedure and some variants. Math. Meth. Oper. Res. 64 (2006) 55–77. Zbl1115.93025MR2264772
- [14] K. Derinkuyu, M. Pinar and A. Camci, An improved probability bound for the approximate S-lemma. Oper. Res. Lett. 35 (2007) 743–746. Zbl1166.60304MR2361043
- [15] M. Drmota, W. Schachermayer and J. Teichmann, A hyper-geometric approach to the BMV-conjecture. Monatshefte Math. 146 (2005) 179–201. Zbl1080.33004MR2184223
- [16] S.W. Drury, Essentially Hermitian matrices revisited. Electronic J. Linear Algebra 15 (2006) 285–296. Zbl1151.15301MR2274328
- [17] G.P. Egorychev, The solution of Van der Waerden’s problem for permanents. Dokl. Akad. Sci. SSSR 258 (1981) 1041–1044 (in Russian), Adv. Math. 42 (1981) 299–305. Zbl0478.15003MR642395
- [18] G.P. Egorychev, Proof of the Van der Waerden conjecture. Siberian Math. J. 22 (1982) 854–859. Zbl0493.15006
- [19] L. Elsner and K.D. Ikramov, Normal matrices: an update. Linear Algebra Appl. 285 (1998) 291–303. Zbl0931.15019MR1653543
- [20] D.I. Falikman, A proof of the Van der Waerden conjecture on the permanent of a doubly stochastic matrix. Mat. Zametki 29 (1981) 931–938 (in Russian). Zbl0475.15007MR625097
- [21] M. Fannes and D. Petz, Perturbation of Wigner matrices and a conjecture. Proc. Amer. Math. Soc. 131 (2003) 1981–1988. Zbl1025.15035MR1963740
- [22] R. Grone, C.R. Johnson, E.M. Sa and H. Wolkowicz, Normal matrices. Linear Algebra Appl. 87 (1987) 213–225. Zbl0613.15021MR878679
- [23] L. Gurvits, The Van der Waerden conjecture for mixed discriminants. Adv. Math. 200 (2006) 435–454. Zbl1093.15011MR2200852
- [24] L. Gurvits, A proof of hyperbolic Van der Waerden conjecture: the right generalization is the ultimate simplification. Preprint (2006). MR2277167
- [25] D. Hägele, Proof of the cases of the Lieb-Seiringer formulation of the Bessis-Moussa-Villani conjecture. J. Stat. Phys. 127 (2007) 1167–1171. Zbl1117.82008MR2331034
- [26] O. Hanner and H. Radstrom, A generalization of a theorem of Fenchel. Proceedings of the American Mathematical Society 2 (1951) 589–593. Zbl0043.16203MR44142
- [27] F. Hansen, Trace functions as Laplace transforms. J. Math. Phys. 47 (2006) 043504. Zbl1111.47022MR2226341
- [28] D.P. Hardin and E.B. Saff, Discretizing manifolds via minimum energy points. Notices Amer. Math. Soc. 51 (2004) 1186–1194. Zbl1095.49031MR2104914
- [29] S. He, Z.-Q. Luo, J. Nie and S. Zhang, Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization. Technical report, Department of systems engineering and engineering management, the Chinese University of Hong-Kong (2007). Zbl1180.90218MR2425027
- [30] C. Hillar, Advances on the Bessis-Moussa-Villani trace conjecture. Linear Algebra Appl. 426 (2007) 130–142. Zbl1126.15024MR2344564
- [31] C. Hillar and C.R. Johnson, On the positivity of the coefficients of a certain polynomial defined by two positive definite matrices. J. Statist. Phys. 118 (2005) 781–789. Zbl1126.15303MR2123655
- [32] J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273. Zbl1120.15025MR2327056
- [33] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Grundlehren der mathematischen Wissenschaften 305. Springer-Verlag (1993); 2nd edition in 1996. Zbl0795.49001MR1261420
- [34] R. Holzman and D.J. Kleitman, On the product of sign vectors and unit vectors. Combinatorica 12 (1992) 303–316. Zbl0759.60008MR1195893
- [35] R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge University Press (1985). Zbl0576.15001MR832183
- [36] H.-X. Huang, P. Pardalos and Z.-J. Shen, A point balance algorithm for the spherical code problem. J. Global Optim. 19 (2001) 329–344. Zbl1020.94007MR1824768
- [37] C.R. Johnson and C.J. Hillar, Eigenvalues of words in two positive definite letters. SIAM J. Matrix Anal. Appl. 23 (2002) 916–928. Zbl1007.68139MR1920925
- [38] C.R. Johnson, S. Leichenauer, P. McNamara and R. Costas, Principal minor sums of . Linear Algebra Appl. 411 (2005) 386–389. Zbl1086.15506MR2178699
- [39] H. Joris, Le chasseur perdu dans la forêt : un problème de géométrie plane. Elem. Math. 35 (1980) 1–14. Zbl0425.51011MR559167
- [40] D. Knuth, A permanent inequality. Amer. Math. Monthly 88 (1981) 731–740. Zbl0478.15004MR668399
- [41] A.B.J. Kuijlaars and E.B. Saff, Asymptotics for minimal discrete energy on the sphere. Trans. Amer. Math. Soc. 350 (1998) 523–538. Zbl0896.52019MR1458327
- [42] J.C. Lagarias, The Van der Waerden conjecture: two soviet solutions. Notices Amer. Math. Soc. 29 (1982) 130–133.
- [43] E.H. Lieb and R. Seiringer, Equivalent forms of the Bessis-Moussa-Villani conjecture. J. Statist. Phys. 115 (2004) 185–190. Zbl1157.81313MR2070093
- [44] M. Marcus and M. Newman, On the minimum of the permanent of a doubly stochastic matrix. Duke Math. J. 26 (1959) 61–72. Zbl0168.28002MR104679
- [45] H. Minc, Permanents, Encyclopedia of Mathematics and its Applications 6. Addison-Wesley, Reading, Mass (1978). Zbl0401.15005MR504978
- [46] A. Mouchet, Bounding the ground-sate energy of a many-body system with the differential method. Nuclear Phys. A 765 (2006) 319–341.
- [47] A. Mouchet, Upper and lower bounds for an eigenvalue associated with a positive eigenvector J. Math. Phys. 47 (2006) 022109. Zbl1111.47065MR2208143
- [48] P. Moussa, On the representation of as a Laplace transform. Rev. Math. Phy. 12 (2000) 621–655. Zbl0976.82027MR1763844
- [49] P.J. Nahin, When least is best. Princeton University Press (2004). Zbl1091.01003MR2022170
- [50] Y. Nesterov and A. Nemirovski, Interior-point polynomial algorithms in convex programming. SIAM Studies in Applied Mathematics (1994). Zbl0824.90112MR1258086
- [51] D. Niven, Maxima and minima without calculus. Reprinted by the Mathematical Association of America (2006). Zbl1171.00300
- [52] J.D. Pinter, Globally optimized spherical point arrangements: model variants and illustrative results. Ann. Oper. Res. 104 (2001) 213–230. Zbl1014.90075MR1877524
- [53] E.A. Rakhmanov, E.B. Saff and Y. Zhou, Minimal discrete energy on the sphere. Math. Res. Lett. 1 (1994) 647–662. Zbl0839.31011MR1306011
- [54] E.B. Saff and A.B.J. Kuijlaars, Distributing many points on the sphere. Math. Intelligencer 19 (1997) 5–11. Zbl0901.11028MR1439152
- [55] S. Smale, Mathematical problems for the next century. Math. Intelligencer 20 (1998) 7–15. Zbl0947.01011MR1631413
- [56] W.J.H. Stortelder, J.J.B. de Swart and J.D. Pinter, Finding elliptic Fekete points sets: two numerical approaches. J. Comput. Appl. Math. 130 (2001) 205–216. Zbl1010.65028MR1827981
- [57] P.L. Takouda, Problèmes d’approximation linéaires coniques : Approches par projections et via Optimisation sous contraintes de semidéfinie positivité. Ph.D. thesis, Paul Sabatier University, Toulouse, France (2003).
- [58] J.H. Van Lint, Notes on Egorychev’s proof of the Van der Waerden conjecture. Linear Algebra Appl. 39 (1981) 1–8. Zbl0468.15005MR625232
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.