A new series of conjectures and open questions in optimization and matrix analysis

Jean-Baptiste Hiriart-Urruty

ESAIM: Control, Optimisation and Calculus of Variations (2009)

  • Volume: 15, Issue: 2, page 454-470
  • ISSN: 1292-8119

Abstract

top
We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.

How to cite

top

Hiriart-Urruty, Jean-Baptiste. "A new series of conjectures and open questions in optimization and matrix analysis." ESAIM: Control, Optimisation and Calculus of Variations 15.2 (2009): 454-470. <http://eudml.org/doc/245935>.

@article{Hiriart2009,
abstract = {We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.},
author = {Hiriart-Urruty, Jean-Baptiste},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {convex sets; positive (semi)definite matrices; variational problems; energy functions; global optimization; permanent function; bistochastic matrices; normal matrices},
language = {eng},
number = {2},
pages = {454-470},
publisher = {EDP-Sciences},
title = {A new series of conjectures and open questions in optimization and matrix analysis},
url = {http://eudml.org/doc/245935},
volume = {15},
year = {2009},
}

TY - JOUR
AU - Hiriart-Urruty, Jean-Baptiste
TI - A new series of conjectures and open questions in optimization and matrix analysis
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2009
PB - EDP-Sciences
VL - 15
IS - 2
SP - 454
EP - 470
AB - We present below a new series of conjectures and open problems in the fields of (global) Optimization and Matrix analysis, in the same spirit as our recently published paper [J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273]. With each problem come a succinct presentation, a list of specific references, and a view on the state of the art of the subject.
LA - eng
KW - convex sets; positive (semi)definite matrices; variational problems; energy functions; global optimization; permanent function; bistochastic matrices; normal matrices
UR - http://eudml.org/doc/245935
ER -

References

top
  1. [1] T. Andreescu, O. Mushkarov and L. Stoyanov, Geometric problems on maxima and minima. Birkhäuser (2006). Zbl1115.00002MR2185951
  2. [2] M. Atiyah and P. Sutcliffe, The geometry of point particles. Proc. R. Soc. London A 458 (2002) 1089–1115. Zbl1010.58015MR1902577
  3. [3] M. Atiyah and P. Sutcliffe, Polyhedra in physics, chemistry and geometry. Milan J. Math. 71 (2003) 33–58. Zbl1050.52002MR2120915
  4. [4] R. Bapat, Mixed discriminants of positive semidefinite matrices. Linear Algebra Appl. 126 (1989) 107–124. Zbl0696.15007MR1040776
  5. [5] M. Bayart, Épreuve de mathématiques générales du concours d’agrégation de mathématiques 1980. Revue de Mathématiques Spéciales (1980–1981) 220–230. MR633521
  6. [6] A. Ben Tal, A. Nemirovski and C. Roos, Robust solutions of uncertain quadratic and conic-quadratic problems. SIAM J. Optim. 13 (2002) 535–560. Zbl1026.90065MR1951034
  7. [7] E. Bendito, A. Carmona, A.M. Encinas and J.M. Gesto, Estimation of Fekete points. J. Comput. Phys. 225 (2007) 2354–2376. Zbl1123.65054MR2349707
  8. [8] D. Bessis, P. Moussa and M. Villani, Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys. 16 (1975) 2318–2325. Zbl0976.82501MR416396
  9. [9] R. Bhatia, Matrix analysis. Springer (1997). Zbl0863.15001MR1477662
  10. [10] J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topological vector spaces. Studia Math. 39 (1971) 59–76. Zbl0214.37702MR313810
  11. [11] G-S. Cheon and I.M. Wanless, An update on Minc’s survey of open problems involving permanents. Linear Algebra Appl. 403 (2005) 314–342. Zbl1078.15005MR2140290
  12. [12] H.T. Croft, K.J. Falconer and R.K. Guy, Unsolved problems in geometry. Springer-verlag (1991). Zbl0748.52001MR1107516
  13. [13] K. Derinkuyu and M. Pinar, On the S-procedure and some variants. Math. Meth. Oper. Res. 64 (2006) 55–77. Zbl1115.93025MR2264772
  14. [14] K. Derinkuyu, M. Pinar and A. Camci, An improved probability bound for the approximate S-lemma. Oper. Res. Lett. 35 (2007) 743–746. Zbl1166.60304MR2361043
  15. [15] M. Drmota, W. Schachermayer and J. Teichmann, A hyper-geometric approach to the BMV-conjecture. Monatshefte Math. 146 (2005) 179–201. Zbl1080.33004MR2184223
  16. [16] S.W. Drury, Essentially Hermitian matrices revisited. Electronic J. Linear Algebra 15 (2006) 285–296. Zbl1151.15301MR2274328
  17. [17] G.P. Egorychev, The solution of Van der Waerden’s problem for permanents. Dokl. Akad. Sci. SSSR 258 (1981) 1041–1044 (in Russian), Adv. Math. 42 (1981) 299–305. Zbl0478.15003MR642395
  18. [18] G.P. Egorychev, Proof of the Van der Waerden conjecture. Siberian Math. J. 22 (1982) 854–859. Zbl0493.15006
  19. [19] L. Elsner and K.D. Ikramov, Normal matrices: an update. Linear Algebra Appl. 285 (1998) 291–303. Zbl0931.15019MR1653543
  20. [20] D.I. Falikman, A proof of the Van der Waerden conjecture on the permanent of a doubly stochastic matrix. Mat. Zametki 29 (1981) 931–938 (in Russian). Zbl0475.15007MR625097
  21. [21] M. Fannes and D. Petz, Perturbation of Wigner matrices and a conjecture. Proc. Amer. Math. Soc. 131 (2003) 1981–1988. Zbl1025.15035MR1963740
  22. [22] R. Grone, C.R. Johnson, E.M. Sa and H. Wolkowicz, Normal matrices. Linear Algebra Appl. 87 (1987) 213–225. Zbl0613.15021MR878679
  23. [23] L. Gurvits, The Van der Waerden conjecture for mixed discriminants. Adv. Math. 200 (2006) 435–454. Zbl1093.15011MR2200852
  24. [24] L. Gurvits, A proof of hyperbolic Van der Waerden conjecture: the right generalization is the ultimate simplification. Preprint (2006). MR2277167
  25. [25] D. Hägele, Proof of the cases p 7 of the Lieb-Seiringer formulation of the Bessis-Moussa-Villani conjecture. J. Stat. Phys. 127 (2007) 1167–1171. Zbl1117.82008MR2331034
  26. [26] O. Hanner and H. Radstrom, A generalization of a theorem of Fenchel. Proceedings of the American Mathematical Society 2 (1951) 589–593. Zbl0043.16203MR44142
  27. [27] F. Hansen, Trace functions as Laplace transforms. J. Math. Phys. 47 (2006) 043504. Zbl1111.47022MR2226341
  28. [28] D.P. Hardin and E.B. Saff, Discretizing manifolds via minimum energy points. Notices Amer. Math. Soc. 51 (2004) 1186–1194. Zbl1095.49031MR2104914
  29. [29] S. He, Z.-Q. Luo, J. Nie and S. Zhang, Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization. Technical report, Department of systems engineering and engineering management, the Chinese University of Hong-Kong (2007). Zbl1180.90218MR2425027
  30. [30] C. Hillar, Advances on the Bessis-Moussa-Villani trace conjecture. Linear Algebra Appl. 426 (2007) 130–142. Zbl1126.15024MR2344564
  31. [31] C. Hillar and C.R. Johnson, On the positivity of the coefficients of a certain polynomial defined by two positive definite matrices. J. Statist. Phys. 118 (2005) 781–789. Zbl1126.15303MR2123655
  32. [32] J.-B. Hiriart-Urruty, Potpourri of conjectures and open questions in Nonlinear analysis and Optimization. SIAM Review 49 (2007) 255–273. Zbl1120.15025MR2327056
  33. [33] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Grundlehren der mathematischen Wissenschaften 305. Springer-Verlag (1993); 2nd edition in 1996. Zbl0795.49001MR1261420
  34. [34] R. Holzman and D.J. Kleitman, On the product of sign vectors and unit vectors. Combinatorica 12 (1992) 303–316. Zbl0759.60008MR1195893
  35. [35] R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge University Press (1985). Zbl0576.15001MR832183
  36. [36] H.-X. Huang, P. Pardalos and Z.-J. Shen, A point balance algorithm for the spherical code problem. J. Global Optim. 19 (2001) 329–344. Zbl1020.94007MR1824768
  37. [37] C.R. Johnson and C.J. Hillar, Eigenvalues of words in two positive definite letters. SIAM J. Matrix Anal. Appl. 23 (2002) 916–928. Zbl1007.68139MR1920925
  38. [38] C.R. Johnson, S. Leichenauer, P. McNamara and R. Costas, Principal minor sums of ( A + t B ) m . Linear Algebra Appl. 411 (2005) 386–389. Zbl1086.15506MR2178699
  39. [39] H. Joris, Le chasseur perdu dans la forêt : un problème de géométrie plane. Elem. Math. 35 (1980) 1–14. Zbl0425.51011MR559167
  40. [40] D. Knuth, A permanent inequality. Amer. Math. Monthly 88 (1981) 731–740. Zbl0478.15004MR668399
  41. [41] A.B.J. Kuijlaars and E.B. Saff, Asymptotics for minimal discrete energy on the sphere. Trans. Amer. Math. Soc. 350 (1998) 523–538. Zbl0896.52019MR1458327
  42. [42] J.C. Lagarias, The Van der Waerden conjecture: two soviet solutions. Notices Amer. Math. Soc. 29 (1982) 130–133. 
  43. [43] E.H. Lieb and R. Seiringer, Equivalent forms of the Bessis-Moussa-Villani conjecture. J. Statist. Phys. 115 (2004) 185–190. Zbl1157.81313MR2070093
  44. [44] M. Marcus and M. Newman, On the minimum of the permanent of a doubly stochastic matrix. Duke Math. J. 26 (1959) 61–72. Zbl0168.28002MR104679
  45. [45] H. Minc, Permanents, Encyclopedia of Mathematics and its Applications 6. Addison-Wesley, Reading, Mass (1978). Zbl0401.15005MR504978
  46. [46] A. Mouchet, Bounding the ground-sate energy of a many-body system with the differential method. Nuclear Phys. A 765 (2006) 319–341. 
  47. [47] A. Mouchet, Upper and lower bounds for an eigenvalue associated with a positive eigenvector J. Math. Phys. 47 (2006) 022109. Zbl1111.47065MR2208143
  48. [48] P. Moussa, On the representation of T r [ e ( A - λ B ) ] as a Laplace transform. Rev. Math. Phy. 12 (2000) 621–655. Zbl0976.82027MR1763844
  49. [49] P.J. Nahin, When least is best. Princeton University Press (2004). Zbl1091.01003MR2022170
  50. [50] Y. Nesterov and A. Nemirovski, Interior-point polynomial algorithms in convex programming. SIAM Studies in Applied Mathematics (1994). Zbl0824.90112MR1258086
  51. [51] D. Niven, Maxima and minima without calculus. Reprinted by the Mathematical Association of America (2006). Zbl1171.00300
  52. [52] J.D. Pinter, Globally optimized spherical point arrangements: model variants and illustrative results. Ann. Oper. Res. 104 (2001) 213–230. Zbl1014.90075MR1877524
  53. [53] E.A. Rakhmanov, E.B. Saff and Y. Zhou, Minimal discrete energy on the sphere. Math. Res. Lett. 1 (1994) 647–662. Zbl0839.31011MR1306011
  54. [54] E.B. Saff and A.B.J. Kuijlaars, Distributing many points on the sphere. Math. Intelligencer 19 (1997) 5–11. Zbl0901.11028MR1439152
  55. [55] S. Smale, Mathematical problems for the next century. Math. Intelligencer 20 (1998) 7–15. Zbl0947.01011MR1631413
  56. [56] W.J.H. Stortelder, J.J.B. de Swart and J.D. Pinter, Finding elliptic Fekete points sets: two numerical approaches. J. Comput. Appl. Math. 130 (2001) 205–216. Zbl1010.65028MR1827981
  57. [57] P.L. Takouda, Problèmes d’approximation linéaires coniques : Approches par projections et via Optimisation sous contraintes de semidéfinie positivité. Ph.D. thesis, Paul Sabatier University, Toulouse, France (2003). 
  58. [58] J.H. Van Lint, Notes on Egorychev’s proof of the Van der Waerden conjecture. Linear Algebra Appl. 39 (1981) 1–8. Zbl0468.15005MR625232

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.