Lower semicontinuity of multiple -quasiconvex integrals
ESAIM: Control, Optimisation and Calculus of Variations (2003)
- Volume: 9, page 105-124
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topFragalà, Ilaria. "Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 105-124. <http://eudml.org/doc/245959>.
@article{Fragalà2003,
abstract = {Lower semicontinuity results are obtained for multiple integrals of the kind $\int _\{\mathbb \{R\}^n\}\!f(x, \!\nabla _\mu u\!)\{\rm d\} \mu $, where $\mu $ is a given positive measure on $\mathbb \{R\}^n$, and the vector-valued function $u$ belongs to the Sobolev space $H ^\{1,p\}_\mu (\mathbb \{R\}^n, \mathbb \{R\}^m)$ associated with $\mu $. The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to $\mu $. More precisely, for fully general $\mu $, a notion of quasiconvexity for $f$ along the tangent bundle to $\mu $, turns out to be necessary for lower semicontinuity; the sufficiency of such condition is also shown, when $\mu $ belongs to a suitable class of rectifiable measures.},
author = {Fragalà, Ilaria},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Borel measures; tangent properties; lower semicontinuity},
language = {eng},
pages = {105-124},
publisher = {EDP-Sciences},
title = {Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals},
url = {http://eudml.org/doc/245959},
volume = {9},
year = {2003},
}
TY - JOUR
AU - Fragalà, Ilaria
TI - Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 105
EP - 124
AB - Lower semicontinuity results are obtained for multiple integrals of the kind $\int _{\mathbb {R}^n}\!f(x, \!\nabla _\mu u\!){\rm d} \mu $, where $\mu $ is a given positive measure on $\mathbb {R}^n$, and the vector-valued function $u$ belongs to the Sobolev space $H ^{1,p}_\mu (\mathbb {R}^n, \mathbb {R}^m)$ associated with $\mu $. The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to $\mu $. More precisely, for fully general $\mu $, a notion of quasiconvexity for $f$ along the tangent bundle to $\mu $, turns out to be necessary for lower semicontinuity; the sufficiency of such condition is also shown, when $\mu $ belongs to a suitable class of rectifiable measures.
LA - eng
KW - Borel measures; tangent properties; lower semicontinuity
UR - http://eudml.org/doc/245959
ER -
References
top- [1] E. Acerbi and N. Fusco, Semicontinuity problems in the Calculus of Variations. Arch. Rational Mech. Anal. 86 (1984) 125-145. Zbl0565.49010MR751305
- [2] L. Ambrosio, Introduzione alla Teoria Geometrica della Misura e Applicazioni alle Superfici Minime, Lectures Notes. Scuola Normale Superiore, Pisa (1996). Zbl0977.49028
- [3] L. Ambrosio, On the lower-semicontinuity of quasi-convex integrals in SBV. Nonlinear Anal. 23 (1994) 405-425. Zbl0817.49017MR1291580
- [4] L. Ambrosio, G. Buttazzo and I. Fonseca, Lower-semicontinuity problems in Sobolev spaces with respect to a measure. J. Math. Pures Appl. 75 (1996) 211-224. Zbl0844.49012MR1387520
- [5] J.M. Ball and F. Murat, -quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. Zbl0549.46019MR759098
- [6] G. Bouchitté and G. Buttazzo, Characterization of optimal shapes and masses through Monge–Kantorovich equation. J. Eur. Math. Soc. 3 (2001) 139-168. Zbl0982.49025
- [7] G. Bouchitté, G. Buttazzo and I. Fragalà, Mean curvature of a measure and related variational problems. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. IV XXV (1997) 179-196. Zbl1015.49015MR1655514
- [8] G. Bouchitté, G. Buttazzo and I. Fragalà, Convergence of Sobolev spaces on varying manifolds. J. Geom. Anal. 11 (2001) 399-422. Zbl1055.49009MR1857850
- [9] G. Bouchitté, G. Buttazzo and P. Seppecher, Energies with respect to a measure and applications to low dimensional structures. Calc. Var. Partial Differential Equations 5 (1997) 37-54. Zbl0934.49011MR1424348
- [10] G. Bouchitté and I. Fragalà, Homogenization of thin structures by two-scale method with respect to measures. SIAM J. Math. Anal. 32 (2001) 1198-1126. Zbl0986.35015MR1856245
- [11] G. Bouchitté and I. Fragalà, Homogenization of elastic thin structures: A measure-fattening approach. J. Convex. Anal. (to appear). Zbl1028.49011MR1970561
- [12] A. Braides, Semicontinuity, -convergence and Homogenization for Multiple Integrals, Lectures Notes. SISSA, Trieste (1994).
- [13] G. Buttazzo, Semicontinuity, Relaxation, and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). Zbl0669.49005MR1020296
- [14] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1988). Zbl0703.49001MR2361288
- [15] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Ann Harbor, Stud. in Adv. Math. (1992). Zbl0804.28001MR1158660
- [16] H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin (1969). Zbl0176.00801MR257325
- [17] I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in . SIAM J. Math. Anal. 23 (1992) 1081-1098. Zbl0764.49012MR1177778
- [18] I. Fragalà and C. Mantegazza, On some notions of tangent space to a measure. Proc. Roy. Soc. Edinburgh 129A (1999) 331-342. Zbl0937.58009MR1686704
- [19] P. Hajlasz and P. Koskela, Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000). Zbl0954.46022MR1683160
- [20] P. Hajlasz and P. Koskela, Sobolev meets Poincaré. C. R. Acad. Sci. Paris 320 (1995) 1211-1215. Zbl0837.46024MR1336257
- [21] A.D. Ioffe, On lower semicontinuity of integral functionals I and II. SIAM J. Contol Optim. 15 (1997) 521-538 and 991-1000. Zbl0379.46022MR637234
- [22] J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. J. Math. Ann. 313 (1999) 653-710. Zbl0924.49012MR1686943
- [23] J. Maly, Lower semicontinuity of quasiconvex integrals. Manuscripta Math. 85 (1994) 419-428. Zbl0862.49017MR1305752
- [24] J.P. Mandallena, Contributions à une approche générale de la régularisation variationnelle de fonctionnelles intégrales, Thèse de Doctorat. Université de Montpellier II (1999).
- [25] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 1-28. Zbl0573.49010MR788671
- [26] P. Marcellini and C. Sbordone, On the existence of minima of multiple integrals in the Calculus of Variations. J. Math. Pures Appl. 62 (1983) 1-9. Zbl0516.49011MR700045
- [27] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, London (1995). Zbl0819.28004MR1333890
- [28] C.B. Morrey, Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966). Zbl0142.38701MR202511
- [29] C. Olech, Weak lower semicontuity of integral functionals. J. Optim. Theory Appl. 19 (1976) 3-16. Zbl0305.49019MR428161
- [30] T. O’Neil, A measure with a large set of tangent measures. Proc. Amer. Math. Soc. 123 (1995) 2217-2221. Zbl0827.28002
- [31] D. Preiss, Geometry of measures on : Distribution, rectifiability and densities. Ann. Math. 125 (1987) 573-643. Zbl0627.28008MR890162
- [32] L. Simon, Lectures on Geometric Measure Theory. Australian Nat. Univ., Proc. Centre for Math. Anal. 3 (1983). Zbl0546.49019MR756417
- [33] M. Valadier, Multiapplications mesurables à valeurs convexes compactes. J. Math. Pures Appl. 50 (1971) 265-297. Zbl0186.49703MR299752
- [34] V.V. Zhikov, On an extension and an application of the two-scale convergence method. Mat. Sb. 191 (2000) 31-72. Zbl0969.35048MR1809928
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.