Mean curvature of a measure and related variational problems

Guy Bouchitté; Giuseppe Buttazzo; Ilaria Fragalà

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 1-2, page 179-196
  • ISSN: 0391-173X

How to cite

top

Bouchitté, Guy, Buttazzo, Giuseppe, and Fragalà, Ilaria. "Mean curvature of a measure and related variational problems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 179-196. <http://eudml.org/doc/84283>.

@article{Bouchitté1997,
author = {Bouchitté, Guy, Buttazzo, Giuseppe, Fragalà, Ilaria},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {integral functional; weak convergence; tangential derivatives; varifolds; tangent space; generalized mean curvature of a measure; weak lower semicontinuity; dimension},
language = {eng},
number = {1-2},
pages = {179-196},
publisher = {Scuola normale superiore},
title = {Mean curvature of a measure and related variational problems},
url = {http://eudml.org/doc/84283},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Bouchitté, Guy
AU - Buttazzo, Giuseppe
AU - Fragalà, Ilaria
TI - Mean curvature of a measure and related variational problems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 179
EP - 196
LA - eng
KW - integral functional; weak convergence; tangential derivatives; varifolds; tangent space; generalized mean curvature of a measure; weak lower semicontinuity; dimension
UR - http://eudml.org/doc/84283
ER -

References

top
  1. [1] G. Bouchitté - G. Buttazzo - P. Seppecher, Energies with respect to a measure and applications to low dimensional structures, Calc. Var.5 (1997), 37-54. Zbl0934.49011MR1424348
  2. [2] G. Bouchitté - G. Buttazzo - P. Seppecher, Shape optimization solutions via Monge-Kantorovich equation, C. R. Acad. Sci. ParisI-324 (1997), 1185-1191. Zbl0884.49023MR1451945
  3. [3] L. Euler, Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimve proprietate gaudentes, Opera omnia, LausanneI-24 (1744), 231-297. 
  4. [4] H. Federer, Geometric measure theory, Springer Verlag, Berlin, 1969. Zbl0176.00801MR257325
  5. [5] I. Fragalà - C. Mantegazza, On some notions of tangent space to a measure, preprint del Dipartimento di Matematica dell' Universita di Pisa (1997). Zbl0937.58009MR1686704
  6. [6] A.E.H. Love, A treatise on the mathematical theory of elasticity, Dover, New York, 1944. Zbl0063.03651MR10851
  7. [7] P. Mattila, Geometry of sets and measures in Euclidean Spaces, Cambridge Univ. Press, London and New York, 1995. Zbl0819.28004MR1333890
  8. [8] D. Preiss, Geometry of measures on Rn: distribution, rectifiability and densities, Ann. Math.125 (1987), 573-643. Zbl0627.28008MR890162
  9. [9] Y.G. Reshetnyak, Weak convergence of completely additive vector measures on a set, Sibirsk. Mat. Zh.9 (1968), 1386-1394. Zbl0169.18301MR240274
  10. [10] L. Simon, Lectures on geometric measure theory, Proc. C. M. A.3, Australian Natl. U. Canberra, 1983. Zbl0546.49019MR756417

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.