Mean curvature of a measure and related variational problems
Guy Bouchitté; Giuseppe Buttazzo; Ilaria Fragalà
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 1-2, page 179-196
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBouchitté, Guy, Buttazzo, Giuseppe, and Fragalà, Ilaria. "Mean curvature of a measure and related variational problems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 179-196. <http://eudml.org/doc/84283>.
@article{Bouchitté1997,
author = {Bouchitté, Guy, Buttazzo, Giuseppe, Fragalà, Ilaria},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {integral functional; weak convergence; tangential derivatives; varifolds; tangent space; generalized mean curvature of a measure; weak lower semicontinuity; dimension},
language = {eng},
number = {1-2},
pages = {179-196},
publisher = {Scuola normale superiore},
title = {Mean curvature of a measure and related variational problems},
url = {http://eudml.org/doc/84283},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Bouchitté, Guy
AU - Buttazzo, Giuseppe
AU - Fragalà, Ilaria
TI - Mean curvature of a measure and related variational problems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 179
EP - 196
LA - eng
KW - integral functional; weak convergence; tangential derivatives; varifolds; tangent space; generalized mean curvature of a measure; weak lower semicontinuity; dimension
UR - http://eudml.org/doc/84283
ER -
References
top- [1] G. Bouchitté - G. Buttazzo - P. Seppecher, Energies with respect to a measure and applications to low dimensional structures, Calc. Var.5 (1997), 37-54. Zbl0934.49011MR1424348
- [2] G. Bouchitté - G. Buttazzo - P. Seppecher, Shape optimization solutions via Monge-Kantorovich equation, C. R. Acad. Sci. ParisI-324 (1997), 1185-1191. Zbl0884.49023MR1451945
- [3] L. Euler, Additamentum I de curvis elasticis, methodus inveniendi lineas curvas maximi minimve proprietate gaudentes, Opera omnia, LausanneI-24 (1744), 231-297.
- [4] H. Federer, Geometric measure theory, Springer Verlag, Berlin, 1969. Zbl0176.00801MR257325
- [5] I. Fragalà - C. Mantegazza, On some notions of tangent space to a measure, preprint del Dipartimento di Matematica dell' Universita di Pisa (1997). Zbl0937.58009MR1686704
- [6] A.E.H. Love, A treatise on the mathematical theory of elasticity, Dover, New York, 1944. Zbl0063.03651MR10851
- [7] P. Mattila, Geometry of sets and measures in Euclidean Spaces, Cambridge Univ. Press, London and New York, 1995. Zbl0819.28004MR1333890
- [8] D. Preiss, Geometry of measures on Rn: distribution, rectifiability and densities, Ann. Math.125 (1987), 573-643. Zbl0627.28008MR890162
- [9] Y.G. Reshetnyak, Weak convergence of completely additive vector measures on a set, Sibirsk. Mat. Zh.9 (1968), 1386-1394. Zbl0169.18301MR240274
- [10] L. Simon, Lectures on geometric measure theory, Proc. C. M. A.3, Australian Natl. U. Canberra, 1983. Zbl0546.49019MR756417
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.