Numerical analysis of nonlinear elliptic-parabolic equations
- Volume: 36, Issue: 1, page 143-153
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMaitre, Emmanuel. "Numerical analysis of nonlinear elliptic-parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 36.1 (2002): 143-153. <http://eudml.org/doc/245999>.
@article{Maitre2002,
abstract = {This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern’s iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).},
author = {Maitre, Emmanuel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {elliptic-parabolic; numerical; iterative method; elliptic-parabolic equation; mild solution; convergence; numerical results},
language = {eng},
number = {1},
pages = {143-153},
publisher = {EDP-Sciences},
title = {Numerical analysis of nonlinear elliptic-parabolic equations},
url = {http://eudml.org/doc/245999},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Maitre, Emmanuel
TI - Numerical analysis of nonlinear elliptic-parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2002
PB - EDP-Sciences
VL - 36
IS - 1
SP - 143
EP - 153
AB - This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern’s iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).
LA - eng
KW - elliptic-parabolic; numerical; iterative method; elliptic-parabolic equation; mild solution; convergence; numerical results
UR - http://eudml.org/doc/245999
ER -
References
top- [1] H.W. Alt and S. Luckhaus, Quasilinear Elliptic-Parabolic Differential Equations. Math. Z. 183 (1983) 311–341. Zbl0497.35049
- [2] H. Bauschke, The approximation of fixed points of composition of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202 (1996) 150–159. Zbl0956.47024
- [3] Ph. Bénilan and K. Ha, Equation d’évolution du type dans . C.R. Acad. Sci. Paris Sér. A 281 (1975) 947–950. Zbl0315.35078
- [4] A. Berger, H. Brézis and J. Rogers, A numerical method for solving the problem . RAIRO Anal. Numér. 13 (1979) 297–312. Zbl0426.65052
- [5] Ph. Bénilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems. Adv. Differential Equations 1 (1996) 1053–1073. Zbl0858.35064
- [6] Ph. Bénilan and P. Wittbold, Sur un problème parabolique-elliptique. ESAIM: M2AN 33 (1999) 121–127. Zbl0922.35080
- [7] P. Colli, On Some Doubly Nonlinear Evolution Equations in Banach Spaces. Technical Report 775, Università di Pavia, Istituto di Analisi Numerica (1991). Zbl0757.34051MR1170721
- [8] P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations 15 (1990) 737–756. Zbl0707.34053
- [9] B. Halpern, Fixed points of nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 957–961. Zbl0177.19101
- [10] W. Jäger and J. Kačur, Solution of Porous Medium Type Systems by Linear Approximation Schemes. Numer. Math. 60 (1991) 407–427. Zbl0744.65060
- [11] W. Jäger and J. Kačur, Solution of Doubly Nonlinear and Degenerate Parabolic Problems by Relaxation Schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605–627. Zbl0837.65103
- [12] J. Kačur, Solution of Some Free Boundary Problems by Relaxation Schemes. SIAM J. Numer. Anal. 36 (1999) 290–316. Zbl0924.65090
- [13] J. Kačur, A. Handlovičová and M. Kačurová, Solution of Nonlinear Diffusion Problems by Linear Approximation Schemes. SIAM J. Numer. Anal. 30 (1993) 1703–1722. Zbl0792.65070
- [14] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod (1969). Zbl0189.40603MR259693
- [15] P.-L. Lions, Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Sér. A. 284 (1977) 1357–1359. Zbl0349.47046
- [16] E. Magenes, R.H. Nochetto and C. Verdi, Energy Error Estimates for a Linear Scheme to Approximate Nonlinear Parabolic Problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 655–678. Zbl0635.65123
- [17] E. Maitre, Sur une classe d’équations à double non linéarité : application à la simulation numérique d’un écoulement visqueux compressible. Thèse, Université Grenoble I (1997).
- [18] E. Maitre and P. Witomski, A pseudomonotonicity adapted to doubly nonlinear elliptic-parabolic equations. Nonlinear Anal. TMA (to appear). Zbl1001.35091
- [19] F. Otto, -Contraction and Uniqueness for Quasilinear Elliptic-Parabolic Equations. J. Differential Equations 131 (1996) 20–38. Zbl0862.35078
- [20] F. Simondon, Sur l’équation par la méthode des semi-groupes dans . Séminaire d’analyse non linéaire, Laboratoire de Mathématiques de Besançon (1984).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.