Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices
- Volume: 39, Issue: 5, page 863-882
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBartels, Sören. "Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.5 (2005): 863-882. <http://eudml.org/doc/246036>.
@article{Bartels2005,
abstract = {This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.},
author = {Bartels, Sören},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Ginzburg-Landau equations; numerical approximation; error analysis; spectral estimate; finite element method; finite element method.},
language = {eng},
number = {5},
pages = {863-882},
publisher = {EDP-Sciences},
title = {Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices},
url = {http://eudml.org/doc/246036},
volume = {39},
year = {2005},
}
TY - JOUR
AU - Bartels, Sören
TI - Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 5
SP - 863
EP - 882
AB - This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.
LA - eng
KW - Ginzburg-Landau equations; numerical approximation; error analysis; spectral estimate; finite element method; finite element method.
UR - http://eudml.org/doc/246036
ER -
References
top- [1] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311–341. Zbl0497.35049
- [2] S. Bartels, A posteriori error analysis for Ginzburg-Landau type equations. In preparation (2004).
- [3] A. Beaulieu, Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation. Nonlinear Anal. 54 (2003) 1079–1119. Zbl1035.34095
- [4] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (1994). Zbl0802.35142MR1269538
- [5] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts in Applied Mathematics, Springer-Verlag, New York (2002). Zbl0804.65101MR1894376
- [6] X. Chen, Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differential Equations 19 (1994) 1371–1395. Zbl0811.35098
- [7] Z. Chen and K.-H. Hoffmann, Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv. Math. Sci. Appl. 5 (1995) 363–389. Zbl0846.65051
- [8] X. Chen, C.M. Elliott and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 1075–1088. Zbl0816.34003
- [9] P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533–1589. Zbl0840.35010
- [10] S. Ding and Z. Liu, Hölder convergence of Ginzburg-Landau approximations to the harmonic map heat flow. Nonlinear Anal. 46 (2001) 807–816. Zbl1027.35125
- [11] Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34 (1992), 54–81 Zbl0787.65091
- [12] Q. Du, M. Gunzburger and J. Peterson, Finite element approximation of a periodic Ginzburg-Landau model for type- superconductors. Numer. Math. 64 (1993) 85–114. Zbl0792.65095
- [13] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D 77 (1994) 383–404. Zbl0814.34039
- [14] L.C. Evans, Partial differential equations. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (1998). Zbl0902.35002MR1625845
- [15] X. Feng and A. Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem. Interfaces Free Bound. 7 (2005) 1–28. Zbl1072.35150
- [16] X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33–65. Zbl1029.65093
- [17] X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541-567. Zbl1115.76049MR2028419
- [18] V. Ginzburg and L. Landau, On the theory of superconductivity. Zh. Èksper. Teoret. Fiz. 20 (1950) 1064–1082, in Men of Physics, L.D. Landau, D. ter Haar, Eds., Pergamon, Oxford (1965) 138–167.
- [19] R.-M. Hervé and M. Hervé, Étude qualitative des solutions réelles d’une équation différentielle liée à l’équation de Ginzburg-Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 427–440. Zbl0836.34090
- [20] K.-H. Hoffmann, J. Zou, Finite element approximations of Landau-Ginzburg’s equation model for structural phase transitions in shape memory alloys. RAIRO Modél. Math. Anal. Numér. 29 (1995) 629–655. Zbl0929.65085
- [21] A. Jaffe and C. Taubes, Vortices and monopoles. Progress in Physics, Birkhäuser Boston, Inc., Boston, MA (1994). Zbl0457.53034MR614447
- [22] D. Kessler, R.H. Nochetto and A. Schmidt, A posteriori error control for the Allen-Cahn problem: circumventing Gronwall’s inequality. Preprint (2003). Zbl1075.65117
- [23] E.H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc. Math. Res. Lett. 1 (1994) 701–715. Zbl0842.49014
- [24] F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension- submanifolds. Comm. Pure Appl. Math. 51 (1998) 385–441. Zbl0932.35121
- [25] F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math. 49 (1996) 323–359. Zbl0853.35058
- [26] F.H. Lin, The dynamical law of Ginzburg-Landau vortices. Proc. of the Conference on Nonlinear Evolution Equations and Infinite-dimensional Dynamical Systems (Shanghai, 1995), World Sci. Publishing, River Edge, NJ (1997) 101–110. Zbl0972.35149
- [27] F.H. Lin and Q. Du, Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28 (1997) 1265–1293. Zbl0888.35054
- [28] T.C. Lin, The stability of the radial solution to the Ginzburg-Landau equation. Comm. Partial Differential Equations 22 (1997) 619–632. Zbl0877.35018
- [29] T.C. Lin, Spectrum of the linearized operator for the Ginzburg-Landau equation. Electron. J. Differential Equations 42 (2000), 25 (electronic). Zbl0954.35119MR1764706
- [30] P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal. 130 (1995) 334–344. Zbl0839.35011
- [31] P. Mironescu, Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 593–598. Zbl0858.35038
- [32] M. Mu, Y. Deng and C.-C. Chou, Numerical methods for simulating Ginzburg-Landau vortices. SIAM J. Sci. Comput. 19 (1998) 1333–1339. Zbl0908.65121
- [33] J.C. Neu, Vortices in complex scalar fields. Phys. D 43 (1990) 385–406. Zbl0711.35024
- [34] F. Pacard and T. Riviere, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (2000). Zbl0948.35003MR1763040
- [35] V. Thomée, Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1997). Zbl0884.65097MR1479170
- [36] M.F. Wheeler, A priori error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723–759. Zbl0232.35060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.