Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices

Sören Bartels

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 5, page 863-882
  • ISSN: 0764-583X

Abstract

top
This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.

How to cite

top

Bartels, Sören. "Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.5 (2005): 863-882. <http://eudml.org/doc/246036>.

@article{Bartels2005,
abstract = {This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.},
author = {Bartels, Sören},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Ginzburg-Landau equations; numerical approximation; error analysis; spectral estimate; finite element method; finite element method.},
language = {eng},
number = {5},
pages = {863-882},
publisher = {EDP-Sciences},
title = {Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices},
url = {http://eudml.org/doc/246036},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Bartels, Sören
TI - Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 5
SP - 863
EP - 882
AB - This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.
LA - eng
KW - Ginzburg-Landau equations; numerical approximation; error analysis; spectral estimate; finite element method; finite element method.
UR - http://eudml.org/doc/246036
ER -

References

top
  1. [1] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311–341. Zbl0497.35049
  2. [2] S. Bartels, A posteriori error analysis for Ginzburg-Landau type equations. In preparation (2004). 
  3. [3] A. Beaulieu, Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation. Nonlinear Anal. 54 (2003) 1079–1119. Zbl1035.34095
  4. [4] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (1994). Zbl0802.35142MR1269538
  5. [5] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts in Applied Mathematics, Springer-Verlag, New York (2002). Zbl0804.65101MR1894376
  6. [6] X. Chen, Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differential Equations 19 (1994) 1371–1395. Zbl0811.35098
  7. [7] Z. Chen and K.-H. Hoffmann, Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv. Math. Sci. Appl. 5 (1995) 363–389. Zbl0846.65051
  8. [8] X. Chen, C.M. Elliott and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 1075–1088. Zbl0816.34003
  9. [9] P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533–1589. Zbl0840.35010
  10. [10] S. Ding and Z. Liu, Hölder convergence of Ginzburg-Landau approximations to the harmonic map heat flow. Nonlinear Anal. 46 (2001) 807–816. Zbl1027.35125
  11. [11] Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34 (1992), 54–81 Zbl0787.65091
  12. [12] Q. Du, M. Gunzburger and J. Peterson, Finite element approximation of a periodic Ginzburg-Landau model for type- II superconductors. Numer. Math. 64 (1993) 85–114. Zbl0792.65095
  13. [13] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D 77 (1994) 383–404. Zbl0814.34039
  14. [14] L.C. Evans, Partial differential equations. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (1998). Zbl0902.35002MR1625845
  15. [15] X. Feng and A. Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem. Interfaces Free Bound. 7 (2005) 1–28. Zbl1072.35150
  16. [16] X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33–65. Zbl1029.65093
  17. [17] X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541-567. Zbl1115.76049MR2028419
  18. [18] V. Ginzburg and L. Landau, On the theory of superconductivity. Zh. Èksper. Teoret. Fiz. 20 (1950) 1064–1082, in Men of Physics, L.D. Landau, D. ter Haar, Eds., Pergamon, Oxford (1965) 138–167. 
  19. [19] R.-M. Hervé and M. Hervé, Étude qualitative des solutions réelles d’une équation différentielle liée à l’équation de Ginzburg-Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 427–440. Zbl0836.34090
  20. [20] K.-H. Hoffmann, J. Zou, Finite element approximations of Landau-Ginzburg’s equation model for structural phase transitions in shape memory alloys. RAIRO Modél. Math. Anal. Numér. 29 (1995) 629–655. Zbl0929.65085
  21. [21] A. Jaffe and C. Taubes, Vortices and monopoles. Progress in Physics, Birkhäuser Boston, Inc., Boston, MA (1994). Zbl0457.53034MR614447
  22. [22] D. Kessler, R.H. Nochetto and A. Schmidt, A posteriori error control for the Allen-Cahn problem: circumventing Gronwall’s inequality. Preprint (2003). Zbl1075.65117
  23. [23] E.H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc. Math. Res. Lett. 1 (1994) 701–715. Zbl0842.49014
  24. [24] F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension- 2 submanifolds. Comm. Pure Appl. Math. 51 (1998) 385–441. Zbl0932.35121
  25. [25] F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math. 49 (1996) 323–359. Zbl0853.35058
  26. [26] F.H. Lin, The dynamical law of Ginzburg-Landau vortices. Proc. of the Conference on Nonlinear Evolution Equations and Infinite-dimensional Dynamical Systems (Shanghai, 1995), World Sci. Publishing, River Edge, NJ (1997) 101–110. Zbl0972.35149
  27. [27] F.H. Lin and Q. Du, Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28 (1997) 1265–1293. Zbl0888.35054
  28. [28] T.C. Lin, The stability of the radial solution to the Ginzburg-Landau equation. Comm. Partial Differential Equations 22 (1997) 619–632. Zbl0877.35018
  29. [29] T.C. Lin, Spectrum of the linearized operator for the Ginzburg-Landau equation. Electron. J. Differential Equations 42 (2000), 25 (electronic). Zbl0954.35119MR1764706
  30. [30] P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal. 130 (1995) 334–344. Zbl0839.35011
  31. [31] P. Mironescu, Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 593–598. Zbl0858.35038
  32. [32] M. Mu, Y. Deng and C.-C. Chou, Numerical methods for simulating Ginzburg-Landau vortices. SIAM J. Sci. Comput. 19 (1998) 1333–1339. Zbl0908.65121
  33. [33] J.C. Neu, Vortices in complex scalar fields. Phys. D 43 (1990) 385–406. Zbl0711.35024
  34. [34] F. Pacard and T. Riviere, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (2000). Zbl0948.35003MR1763040
  35. [35] V. Thomée, Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1997). Zbl0884.65097MR1479170
  36. [36] M.F. Wheeler, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723–759. Zbl0232.35060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.