Some results on the cofiniteness of local cohomology modules

Sohrab Sohrabi Laleh; Mir Yousef Sadeghi; Mahdi Hanifi Mostaghim

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 105-110
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative Noetherian ring, 𝔞 an ideal of R , M an R -module and t a non-negative integer. In this paper we show that the class of minimax modules includes the class of 𝒜ℱ modules. The main result is that if the R -module Ext R t ( R / 𝔞 , M ) is finite (finitely generated), H 𝔞 i ( M ) is 𝔞 -cofinite for all i < t and H 𝔞 t ( M ) is minimax then H 𝔞 t ( M ) is 𝔞 -cofinite. As a consequence we show that if M and N are finite R -modules and H 𝔞 i ( N ) is minimax for all i < t then the set of associated prime ideals of the generalized local cohomology module H 𝔞 t ( M , N ) is finite.

How to cite

top

Laleh, Sohrab Sohrabi, Sadeghi, Mir Yousef, and Mostaghim, Mahdi Hanifi. "Some results on the cofiniteness of local cohomology modules." Czechoslovak Mathematical Journal 62.1 (2012): 105-110. <http://eudml.org/doc/246139>.

@article{Laleh2012,
abstract = {Let $R$ be a commutative Noetherian ring, $\mathfrak \{a\}$ an ideal of $R$, $M$ an $R$-module and $t$ a non-negative integer. In this paper we show that the class of minimax modules includes the class of $\mathcal \{AF\}$ modules. The main result is that if the $R$-module $\{\rm Ext\}^t_R(R/\mathfrak \{a\},M)$ is finite (finitely generated), $H^i_\mathfrak \{a\}(M)$ is $\mathfrak \{a\} $-cofinite for all $i<t$ and $H^t_\mathfrak \{a\}(M)$ is minimax then $H^t_\mathfrak \{a\}(M)$ is $\mathfrak \{a\} $-cofinite. As a consequence we show that if $M$ and $N$ are finite $R$-modules and $H^i_\mathfrak \{a\}(N)$ is minimax for all $i<t$ then the set of associated prime ideals of the generalized local cohomology module $H^t_\mathfrak \{a\}(M,N)$ is finite.},
author = {Laleh, Sohrab Sohrabi, Sadeghi, Mir Yousef, Mostaghim, Mahdi Hanifi},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology; cofinite modules; mimimax modules; AF modules; associated primes; local cohomology; cofinite modules; minimax modules},
language = {eng},
number = {1},
pages = {105-110},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on the cofiniteness of local cohomology modules},
url = {http://eudml.org/doc/246139},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Laleh, Sohrab Sohrabi
AU - Sadeghi, Mir Yousef
AU - Mostaghim, Mahdi Hanifi
TI - Some results on the cofiniteness of local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 105
EP - 110
AB - Let $R$ be a commutative Noetherian ring, $\mathfrak {a}$ an ideal of $R$, $M$ an $R$-module and $t$ a non-negative integer. In this paper we show that the class of minimax modules includes the class of $\mathcal {AF}$ modules. The main result is that if the $R$-module ${\rm Ext}^t_R(R/\mathfrak {a},M)$ is finite (finitely generated), $H^i_\mathfrak {a}(M)$ is $\mathfrak {a} $-cofinite for all $i<t$ and $H^t_\mathfrak {a}(M)$ is minimax then $H^t_\mathfrak {a}(M)$ is $\mathfrak {a} $-cofinite. As a consequence we show that if $M$ and $N$ are finite $R$-modules and $H^i_\mathfrak {a}(N)$ is minimax for all $i<t$ then the set of associated prime ideals of the generalized local cohomology module $H^t_\mathfrak {a}(M,N)$ is finite.
LA - eng
KW - local cohomology; cofinite modules; mimimax modules; AF modules; associated primes; local cohomology; cofinite modules; minimax modules
UR - http://eudml.org/doc/246139
ER -

References

top
  1. Bahmanpour, K., Naghipour, R., 10.1090/S0002-9939-08-09260-5, Proc. Am. Math. Soc. 136 2359-2363 (2008). (2008) Zbl1141.13014MR2390502DOI10.1090/S0002-9939-08-09260-5
  2. Brodmann, M. P., Sharp, R. Y., Local Cohomology, An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge (2008). (2008) Zbl1133.13017MR1613627
  3. Enochs, E., 10.1090/S0002-9939-1984-0754698-X, Proc. Am. Math. Soc. 92 179-184 (1984). (1984) Zbl0522.13008MR0754698DOI10.1090/S0002-9939-1984-0754698-X
  4. Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 145-164 (1970). (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
  5. Herzog, J., Komplexe Auflösungen und Dualität in der lokalen Algebra, Habilitationsschrift Universität Regensburg, Regensburg (1970), German. (1970) 
  6. Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 421-429 (1991). (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
  7. Mafi, A., 10.1007/s00013-006-1674-1, Arch. Math. 87 211-216 (2006). (2006) Zbl1102.13018MR2258920DOI10.1007/s00013-006-1674-1
  8. Mafi, A., 10.1080/00927870600650739, Commun. Algebra. 34 2489-2494 (2006). (2006) Zbl1097.13023MR2240388DOI10.1080/00927870600650739
  9. Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 649-668 (2005). (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
  10. Melkersson, L., Problems and Results on Cofiniteness: A Survey, IPM Proceedings Series No. II, IPM (2004). (2004) 
  11. Vasconcelos, W. V., Divisor Theory in Module Categories, North-Holland Mathematics Studies, 14. Notas de Matematica, North-Holland Publishing Company, Amsterdam (1974). (1974) MR0498530
  12. Yassemi, S., 10.1081/AGB-100002392, Commun. Algebra 29 2333-2340 (2001). (2001) Zbl1023.13013MR1845114DOI10.1081/AGB-100002392
  13. Zink, T., 10.1002/mana.19740640114, German Math. Nachr. 64 239-252 (1974). (1974) Zbl0297.13015MR0364223DOI10.1002/mana.19740640114
  14. Zöschinger, H., 10.1016/0021-8693(86)90125-0, German J. Algebra 102 1-32 (1986). (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0
  15. Zöschinger, H., 10.14492/hokmj/1381517790, German Hokkaido Math. J. 17 101-116 (1988). (1988) Zbl0653.13011MR0928469DOI10.14492/hokmj/1381517790

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.