A generalization of the finiteness problem of the local cohomology modules
Ahmad Abbasi; Hajar Roshan-Shekalgourabi
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 69-78
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbbasi, Ahmad, and Roshan-Shekalgourabi, Hajar. "A generalization of the finiteness problem of the local cohomology modules." Czechoslovak Mathematical Journal 64.1 (2014): 69-78. <http://eudml.org/doc/261979>.
@article{Abbasi2014,
abstract = {Let $R$ be a commutative Noetherian ring and $\{\mathfrak \{a\}\}$ an ideal of $R$. We introduce the concept of $\{\mathfrak \{a\}\}$-weakly Laskerian $R$-modules, and we show that if $M$ is an $\{\mathfrak \{a\}\}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that $\{\rm Ext\}^j_R(R/\{\mathfrak \{a\}\}, H^i_\{\{\mathfrak \{a\}\}\}(M))$ is $\{\mathfrak \{a\}\}$-weakly Laskerian for all $i<s$ and all $j$, then for any $\{\mathfrak \{a\}\}$-weakly Laskerian submodule $X$ of $H^s_\{\{\mathfrak \{a\}\}\}(M)$, the $R$-module $\{\rm Hom\}_R(R/\{\mathfrak \{a\}\},H^s_\{\{\mathfrak \{a\}\}\}(M)/X)$ is $\{\mathfrak \{a\}\}$-weakly Laskerian. In particular, the set of associated primes of $H^s_\{\mathfrak \{a\}\}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an $\{\mathfrak \{a\}\}$-weakly Laskerian $R$-module such that $ H^i_\{\{\mathfrak \{a\}\}\}(N)$ is $\{\mathfrak \{a\}\}$-weakly Laskerian for all $i<s$, then the set of associated primes of $H^s_\{\mathfrak \{a\}\}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).},
author = {Abbasi, Ahmad, Roshan-Shekalgourabi, Hajar},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology module; weakly Laskerian module; $\{\mathfrak \{a\}\}$-weakly Laskerian module; associated prime; associated prime; local cohomology module; $\{\mathfrak \{a\}\}$-weakly Laskerian module},
language = {eng},
number = {1},
pages = {69-78},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A generalization of the finiteness problem of the local cohomology modules},
url = {http://eudml.org/doc/261979},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Abbasi, Ahmad
AU - Roshan-Shekalgourabi, Hajar
TI - A generalization of the finiteness problem of the local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 69
EP - 78
AB - Let $R$ be a commutative Noetherian ring and ${\mathfrak {a}}$ an ideal of $R$. We introduce the concept of ${\mathfrak {a}}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak {a}}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak {a}}, H^i_{{\mathfrak {a}}}(M))$ is ${\mathfrak {a}}$-weakly Laskerian for all $i<s$ and all $j$, then for any ${\mathfrak {a}}$-weakly Laskerian submodule $X$ of $H^s_{{\mathfrak {a}}}(M)$, the $R$-module ${\rm Hom}_R(R/{\mathfrak {a}},H^s_{{\mathfrak {a}}}(M)/X)$ is ${\mathfrak {a}}$-weakly Laskerian. In particular, the set of associated primes of $H^s_{\mathfrak {a}}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an ${\mathfrak {a}}$-weakly Laskerian $R$-module such that $ H^i_{{\mathfrak {a}}}(N)$ is ${\mathfrak {a}}$-weakly Laskerian for all $i<s$, then the set of associated primes of $H^s_{\mathfrak {a}}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).
LA - eng
KW - local cohomology module; weakly Laskerian module; ${\mathfrak {a}}$-weakly Laskerian module; associated prime; associated prime; local cohomology module; ${\mathfrak {a}}$-weakly Laskerian module
UR - http://eudml.org/doc/261979
ER -
References
top- Azami, J., Naghipour, R., Vakili, B., 10.1090/S0002-9939-08-09530-0, Proc. Am. Math. Soc. 137 (2009), 439-448. (2009) MR2448562DOI10.1090/S0002-9939-08-09530-0
- Bijan-Zadeh, M. H., 10.1017/S0017089500004158, Glasg. Math. J. 21 (1980), 173-181. (1980) Zbl0438.13009MR0582127DOI10.1017/S0017089500004158
- Borna, K., Sahandi, P., Yassemi, S., 10.4153/CMB-2007-058-8, Can. Math. Bull. 50 (2007), 598-602. (2007) Zbl1140.13016MR2364209DOI10.4153/CMB-2007-058-8
- Brodmann, M. P., Lashgari, F. A., 10.1090/S0002-9939-00-05328-4, Proc. Am. Math. Soc. 128 (2000), 2851-2853. (2000) Zbl0955.13007MR1664309DOI10.1090/S0002-9939-00-05328-4
- Brodmann, M. P., Sharp, R. Y., Local Cohomology. An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627
- Dibaei, M. T., Yassemi, S., 10.1007/s00229-005-0538-5, Manuscr. Math. 117 (2005), 199-205. (2005) Zbl1105.13016MR2150481DOI10.1007/s00229-005-0538-5
- Divaani-Aazar, K., Esmkhani, M. A., 10.1081/AGB-200063983, Commun. Algebra 33 (2005), 2857-2863. (2005) Zbl1090.13012MR2159511DOI10.1081/AGB-200063983
- Divaani-Aazar, K., Mafi, A., 10.1090/S0002-9939-04-07728-7, Proc. Am. Math. Soc. 133 (2005), 655-660. (2005) Zbl1103.13010MR2113911DOI10.1090/S0002-9939-04-07728-7
- Herzog, J., Komplexe, Auflösungen und Dualität in der lokalen Algebra, Habilitationsschrift, Universität Regensburg (1970), German. (1970)
- Huneke, C., Problems on local cohomology modules, Free Resolution in Commutative Algebra and Algebraic Geometry (Sundance, UT, 1990), Res. Notes Math., 2 Jones and Bartlett, Boston, MA (1992), 93-108. (1992) MR1165320
- Katzman, M., 10.1016/S0021-8693(02)00032-7, J. Algebra 252 (2002), 161-166. (2002) MR1922391DOI10.1016/S0021-8693(02)00032-7
- Khashyarmanesh, K., 10.1090/S0002-9939-06-08664-3, Proc. Am. Math. Soc. (electronic) 135 (2007), 1319-1327. (2007) Zbl1111.13016MR2276640DOI10.1090/S0002-9939-06-08664-3
- Khashyarmanesh, K., Salarian, S., 10.1080/00927879908826816, Commun. Algebra 27 (1999), 6191-6198. (1999) Zbl0940.13013MR1726302DOI10.1080/00927879908826816
- Laleh, S. S., Sadeghi, M. Y., Mostaghim, M. H., 10.1007/s10587-012-0019-4, Czech. Math. J. 62 (2012), 105-110. (2012) Zbl1249.13012MR2899737DOI10.1007/s10587-012-0019-4
- Mafi, A., 10.1007/s12044-009-0016-1, Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. (2009) Zbl1171.13011MR2526419DOI10.1007/s12044-009-0016-1
- Quy, P. H., 10.1090/S0002-9939-10-10235-4, Proc. Am. Math. Soc. 138 (2010), 1965-1968. (2010) Zbl1190.13010MR2596030DOI10.1090/S0002-9939-10-10235-4
- Singh, A. K., 10.4310/MRL.2000.v7.n2.a3, Math. Res. Lett. 7 (2000), 165-176. (2000) Zbl0965.13013MR1764314DOI10.4310/MRL.2000.v7.n2.a3
- Zöschinger, H., 10.1016/0021-8693(86)90125-0, German J. Algebra 102 (1986), 1-32. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.