A generalization of the finiteness problem of the local cohomology modules

Ahmad Abbasi; Hajar Roshan-Shekalgourabi

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 1, page 69-78
  • ISSN: 0011-4642

Abstract

top
Let R be a commutative Noetherian ring and 𝔞 an ideal of R . We introduce the concept of 𝔞 -weakly Laskerian R -modules, and we show that if M is an 𝔞 -weakly Laskerian R -module and s is a non-negative integer such that Ext R j ( R / 𝔞 , H 𝔞 i ( M ) ) is 𝔞 -weakly Laskerian for all i < s and all j , then for any 𝔞 -weakly Laskerian submodule X of H 𝔞 s ( M ) , the R -module Hom R ( R / 𝔞 , H 𝔞 s ( M ) / X ) is 𝔞 -weakly Laskerian. In particular, the set of associated primes of H 𝔞 s ( M ) / X is finite. As a consequence, it follows that if M is a finitely generated R -module and N is an 𝔞 -weakly Laskerian R -module such that H 𝔞 i ( N ) is 𝔞 -weakly Laskerian for all i < s , then the set of associated primes of H 𝔞 s ( M , N ) is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).

How to cite

top

Abbasi, Ahmad, and Roshan-Shekalgourabi, Hajar. "A generalization of the finiteness problem of the local cohomology modules." Czechoslovak Mathematical Journal 64.1 (2014): 69-78. <http://eudml.org/doc/261979>.

@article{Abbasi2014,
abstract = {Let $R$ be a commutative Noetherian ring and $\{\mathfrak \{a\}\}$ an ideal of $R$. We introduce the concept of $\{\mathfrak \{a\}\}$-weakly Laskerian $R$-modules, and we show that if $M$ is an $\{\mathfrak \{a\}\}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that $\{\rm Ext\}^j_R(R/\{\mathfrak \{a\}\}, H^i_\{\{\mathfrak \{a\}\}\}(M))$ is $\{\mathfrak \{a\}\}$-weakly Laskerian for all $i<s$ and all $j$, then for any $\{\mathfrak \{a\}\}$-weakly Laskerian submodule $X$ of $H^s_\{\{\mathfrak \{a\}\}\}(M)$, the $R$-module $\{\rm Hom\}_R(R/\{\mathfrak \{a\}\},H^s_\{\{\mathfrak \{a\}\}\}(M)/X)$ is $\{\mathfrak \{a\}\}$-weakly Laskerian. In particular, the set of associated primes of $H^s_\{\mathfrak \{a\}\}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an $\{\mathfrak \{a\}\}$-weakly Laskerian $R$-module such that $ H^i_\{\{\mathfrak \{a\}\}\}(N)$ is $\{\mathfrak \{a\}\}$-weakly Laskerian for all $i<s$, then the set of associated primes of $H^s_\{\mathfrak \{a\}\}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).},
author = {Abbasi, Ahmad, Roshan-Shekalgourabi, Hajar},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology module; weakly Laskerian module; $\{\mathfrak \{a\}\}$-weakly Laskerian module; associated prime; associated prime; local cohomology module; $\{\mathfrak \{a\}\}$-weakly Laskerian module},
language = {eng},
number = {1},
pages = {69-78},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A generalization of the finiteness problem of the local cohomology modules},
url = {http://eudml.org/doc/261979},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Abbasi, Ahmad
AU - Roshan-Shekalgourabi, Hajar
TI - A generalization of the finiteness problem of the local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 69
EP - 78
AB - Let $R$ be a commutative Noetherian ring and ${\mathfrak {a}}$ an ideal of $R$. We introduce the concept of ${\mathfrak {a}}$-weakly Laskerian $R$-modules, and we show that if $M$ is an ${\mathfrak {a}}$-weakly Laskerian $R$-module and $s$ is a non-negative integer such that ${\rm Ext}^j_R(R/{\mathfrak {a}}, H^i_{{\mathfrak {a}}}(M))$ is ${\mathfrak {a}}$-weakly Laskerian for all $i<s$ and all $j$, then for any ${\mathfrak {a}}$-weakly Laskerian submodule $X$ of $H^s_{{\mathfrak {a}}}(M)$, the $R$-module ${\rm Hom}_R(R/{\mathfrak {a}},H^s_{{\mathfrak {a}}}(M)/X)$ is ${\mathfrak {a}}$-weakly Laskerian. In particular, the set of associated primes of $H^s_{\mathfrak {a}}(M)/X$ is finite. As a consequence, it follows that if $M$ is a finitely generated $R$-module and $N$ is an ${\mathfrak {a}}$-weakly Laskerian $R$-module such that $ H^i_{{\mathfrak {a}}}(N)$ is ${\mathfrak {a}}$-weakly Laskerian for all $i<s$, then the set of associated primes of $H^s_{\mathfrak {a}}(M, N)$ is finite. This generalizes the main result of S. Sohrabi Laleh, M. Y. Sadeghi, and M. Hanifi Mostaghim (2012).
LA - eng
KW - local cohomology module; weakly Laskerian module; ${\mathfrak {a}}$-weakly Laskerian module; associated prime; associated prime; local cohomology module; ${\mathfrak {a}}$-weakly Laskerian module
UR - http://eudml.org/doc/261979
ER -

References

top
  1. Azami, J., Naghipour, R., Vakili, B., 10.1090/S0002-9939-08-09530-0, Proc. Am. Math. Soc. 137 (2009), 439-448. (2009) MR2448562DOI10.1090/S0002-9939-08-09530-0
  2. Bijan-Zadeh, M. H., 10.1017/S0017089500004158, Glasg. Math. J. 21 (1980), 173-181. (1980) Zbl0438.13009MR0582127DOI10.1017/S0017089500004158
  3. Borna, K., Sahandi, P., Yassemi, S., 10.4153/CMB-2007-058-8, Can. Math. Bull. 50 (2007), 598-602. (2007) Zbl1140.13016MR2364209DOI10.4153/CMB-2007-058-8
  4. Brodmann, M. P., Lashgari, F. A., 10.1090/S0002-9939-00-05328-4, Proc. Am. Math. Soc. 128 (2000), 2851-2853. (2000) Zbl0955.13007MR1664309DOI10.1090/S0002-9939-00-05328-4
  5. Brodmann, M. P., Sharp, R. Y., Local Cohomology. An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627
  6. Dibaei, M. T., Yassemi, S., 10.1007/s00229-005-0538-5, Manuscr. Math. 117 (2005), 199-205. (2005) Zbl1105.13016MR2150481DOI10.1007/s00229-005-0538-5
  7. Divaani-Aazar, K., Esmkhani, M. A., 10.1081/AGB-200063983, Commun. Algebra 33 (2005), 2857-2863. (2005) Zbl1090.13012MR2159511DOI10.1081/AGB-200063983
  8. Divaani-Aazar, K., Mafi, A., 10.1090/S0002-9939-04-07728-7, Proc. Am. Math. Soc. 133 (2005), 655-660. (2005) Zbl1103.13010MR2113911DOI10.1090/S0002-9939-04-07728-7
  9. Herzog, J., Komplexe, Auflösungen und Dualität in der lokalen Algebra, Habilitationsschrift, Universität Regensburg (1970), German. (1970) 
  10. Huneke, C., Problems on local cohomology modules, Free Resolution in Commutative Algebra and Algebraic Geometry (Sundance, UT, 1990), Res. Notes Math., 2 Jones and Bartlett, Boston, MA (1992), 93-108. (1992) MR1165320
  11. Katzman, M., 10.1016/S0021-8693(02)00032-7, J. Algebra 252 (2002), 161-166. (2002) MR1922391DOI10.1016/S0021-8693(02)00032-7
  12. Khashyarmanesh, K., 10.1090/S0002-9939-06-08664-3, Proc. Am. Math. Soc. (electronic) 135 (2007), 1319-1327. (2007) Zbl1111.13016MR2276640DOI10.1090/S0002-9939-06-08664-3
  13. Khashyarmanesh, K., Salarian, S., 10.1080/00927879908826816, Commun. Algebra 27 (1999), 6191-6198. (1999) Zbl0940.13013MR1726302DOI10.1080/00927879908826816
  14. Laleh, S. S., Sadeghi, M. Y., Mostaghim, M. H., 10.1007/s10587-012-0019-4, Czech. Math. J. 62 (2012), 105-110. (2012) Zbl1249.13012MR2899737DOI10.1007/s10587-012-0019-4
  15. Mafi, A., 10.1007/s12044-009-0016-1, Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 159-164. (2009) Zbl1171.13011MR2526419DOI10.1007/s12044-009-0016-1
  16. Quy, P. H., 10.1090/S0002-9939-10-10235-4, Proc. Am. Math. Soc. 138 (2010), 1965-1968. (2010) Zbl1190.13010MR2596030DOI10.1090/S0002-9939-10-10235-4
  17. Singh, A. K., 10.4310/MRL.2000.v7.n2.a3, Math. Res. Lett. 7 (2000), 165-176. (2000) Zbl0965.13013MR1764314DOI10.4310/MRL.2000.v7.n2.a3
  18. Zöschinger, H., 10.1016/0021-8693(86)90125-0, German J. Algebra 102 (1986), 1-32. (1986) Zbl0593.13012MR0853228DOI10.1016/0021-8693(86)90125-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.