Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on -tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations
Eva Brestovanská; Milan Medveď
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)
- Volume: 51, Issue: 2, page 27-39
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topBrestovanská, Eva, and Medveď, Milan. "Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.2 (2012): 27-39. <http://eudml.org/doc/246177>.
@article{Brestovanská2012,
abstract = {In this paper we prove some fixed point theorems of the Banach and Krasnosel’skii type for mappings on the $m$-tuple Cartesian product of a Banach algebra $X$ over $\mathbb \{R\}$. Using these theorems existence results for a system of integral equations of the Gripenberg’s type are proved. A sufficient condition for the nonexistence of blowing-up solutions of this system of integral equations is also proved.},
author = {Brestovanská, Eva, Medveď, Milan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {fixed point; Banach algebra; integral equation; integro-differential system; epidemic model; blowing-up solution; fixed point; Banach algebra; integral equation; integro-differential system; epidemic model; blowing-up solution},
language = {eng},
number = {2},
pages = {27-39},
publisher = {Palacký University Olomouc},
title = {Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations},
url = {http://eudml.org/doc/246177},
volume = {51},
year = {2012},
}
TY - JOUR
AU - Brestovanská, Eva
AU - Medveď, Milan
TI - Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 2
SP - 27
EP - 39
AB - In this paper we prove some fixed point theorems of the Banach and Krasnosel’skii type for mappings on the $m$-tuple Cartesian product of a Banach algebra $X$ over $\mathbb {R}$. Using these theorems existence results for a system of integral equations of the Gripenberg’s type are proved. A sufficient condition for the nonexistence of blowing-up solutions of this system of integral equations is also proved.
LA - eng
KW - fixed point; Banach algebra; integral equation; integro-differential system; epidemic model; blowing-up solution; fixed point; Banach algebra; integral equation; integro-differential system; epidemic model; blowing-up solution
UR - http://eudml.org/doc/246177
ER -
References
top- Abdeldaim, A., On some new Gronwall-Bellman-Ou-Iang type integral inequalities to study certain epidemic model, J. Integral Equations Appl. (2011), (to appear). (2011) MR2945799
- Banas, J., Sadarangani, K., 10.1016/S0895-7177(03)90084-7, Math. Comput. Modelling 38 (2003), 245–250. (2003) Zbl1053.45007MR2004993DOI10.1016/S0895-7177(03)90084-7
- Banas, J., Lacko, M., Fixed points of the product of operators in Banach algebra, Panamer. Math. J. 12 (2002), 101–109. (2002) MR1895774
- Bihari, I., 10.1007/BF02022967, Acta Mathematica Hungarica 7, 1 (1956), 81–94. (1956) Zbl0070.08201MR0079154DOI10.1007/BF02022967
- Brestovanská, E., Qualitative behaviour of an integral equation related to some epidemic model, Demonstratio Math. 36, 3 (2003), 604–609. (2003) Zbl1044.45001MR2004545
- Djebali, S., Hammache, K., Furi-Pera fixed point theorems in Banach algebra with applications, Acta Univ. Palacki. Olomouc, Fac. Rer. Nat., Math. 47 (2008), 55–75. (2008) MR2482717
- Gripenberg, G., On some epidmic models, Quart. Appl. Math. 39 (1981), 317–327. (1981) MR0636238
- Krasnosel’skii, M. A., Two remarks on the method of succesive approximations, Uspechi Mat. Nauk 10 (1955), 123–127. (1955) MR0068119
- Olaru, I. M., An integral equation via weakly Picard operators, Fixed Point Theory 11, 1 (2010), 97–106. (2010) Zbl1196.45009MR2656009
- Olaru, I. M., Generalization of an integral equation related to some epidemic models, Carpatian J. Math. 26 (2010), 0–4. (2010) Zbl1224.34205MR2676722
- Zeidler, E., 10.1007/978-1-4612-0815-0, Applied Mathematical Sciences, Vol. 108, Springer-Verlag, New York, 1995. (1995) Zbl0834.46002MR1347691DOI10.1007/978-1-4612-0815-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.