Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on m -tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations

Eva Brestovanská; Milan Medveď

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)

  • Volume: 51, Issue: 2, page 27-39
  • ISSN: 0231-9721

Abstract

top
In this paper we prove some fixed point theorems of the Banach and Krasnosel’skii type for mappings on the m -tuple Cartesian product of a Banach algebra X over . Using these theorems existence results for a system of integral equations of the Gripenberg’s type are proved. A sufficient condition for the nonexistence of blowing-up solutions of this system of integral equations is also proved.

How to cite

top

Brestovanská, Eva, and Medveď, Milan. "Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.2 (2012): 27-39. <http://eudml.org/doc/246177>.

@article{Brestovanská2012,
abstract = {In this paper we prove some fixed point theorems of the Banach and Krasnosel’skii type for mappings on the $m$-tuple Cartesian product of a Banach algebra $X$ over $\mathbb \{R\}$. Using these theorems existence results for a system of integral equations of the Gripenberg’s type are proved. A sufficient condition for the nonexistence of blowing-up solutions of this system of integral equations is also proved.},
author = {Brestovanská, Eva, Medveď, Milan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {fixed point; Banach algebra; integral equation; integro-differential system; epidemic model; blowing-up solution; fixed point; Banach algebra; integral equation; integro-differential system; epidemic model; blowing-up solution},
language = {eng},
number = {2},
pages = {27-39},
publisher = {Palacký University Olomouc},
title = {Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations},
url = {http://eudml.org/doc/246177},
volume = {51},
year = {2012},
}

TY - JOUR
AU - Brestovanská, Eva
AU - Medveď, Milan
TI - Fixed Point Theorems of the Banach and Krasnosel’skii Type for Mappings on $m$-tuple Cartesian Product of Banach Algebras and Systems of Generalized Gripenberg’s Equations
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 2
SP - 27
EP - 39
AB - In this paper we prove some fixed point theorems of the Banach and Krasnosel’skii type for mappings on the $m$-tuple Cartesian product of a Banach algebra $X$ over $\mathbb {R}$. Using these theorems existence results for a system of integral equations of the Gripenberg’s type are proved. A sufficient condition for the nonexistence of blowing-up solutions of this system of integral equations is also proved.
LA - eng
KW - fixed point; Banach algebra; integral equation; integro-differential system; epidemic model; blowing-up solution; fixed point; Banach algebra; integral equation; integro-differential system; epidemic model; blowing-up solution
UR - http://eudml.org/doc/246177
ER -

References

top
  1. Abdeldaim, A., On some new Gronwall-Bellman-Ou-Iang type integral inequalities to study certain epidemic model, J. Integral Equations Appl. (2011), (to appear). (2011) MR2945799
  2. Banas, J., Sadarangani, K., 10.1016/S0895-7177(03)90084-7, Math. Comput. Modelling 38 (2003), 245–250. (2003) Zbl1053.45007MR2004993DOI10.1016/S0895-7177(03)90084-7
  3. Banas, J., Lacko, M., Fixed points of the product of operators in Banach algebra, Panamer. Math. J. 12 (2002), 101–109. (2002) MR1895774
  4. Bihari, I., 10.1007/BF02022967, Acta Mathematica Hungarica 7, 1 (1956), 81–94. (1956) Zbl0070.08201MR0079154DOI10.1007/BF02022967
  5. Brestovanská, E., Qualitative behaviour of an integral equation related to some epidemic model, Demonstratio Math. 36, 3 (2003), 604–609. (2003) Zbl1044.45001MR2004545
  6. Djebali, S., Hammache, K., Furi-Pera fixed point theorems in Banach algebra with applications, Acta Univ. Palacki. Olomouc, Fac. Rer. Nat., Math. 47 (2008), 55–75. (2008) MR2482717
  7. Gripenberg, G., On some epidmic models, Quart. Appl. Math. 39 (1981), 317–327. (1981) MR0636238
  8. Krasnosel’skii, M. A., Two remarks on the method of succesive approximations, Uspechi Mat. Nauk 10 (1955), 123–127. (1955) MR0068119
  9. Olaru, I. M., An integral equation via weakly Picard operators, Fixed Point Theory 11, 1 (2010), 97–106. (2010) Zbl1196.45009MR2656009
  10. Olaru, I. M., Generalization of an integral equation related to some epidemic models, Carpatian J. Math. 26 (2010), 0–4. (2010) Zbl1224.34205MR2676722
  11. Zeidler, E., 10.1007/978-1-4612-0815-0, Applied Mathematical Sciences, Vol. 108, Springer-Verlag, New York, 1995. (1995) Zbl0834.46002MR1347691DOI10.1007/978-1-4612-0815-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.