Furi–Pera fixed point theorems in Banach algebras with applications
Smaïl Djebali; Karima Hammache
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2008)
- Volume: 47, Issue: 1, page 55-75
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topDjebali, Smaïl, and Hammache, Karima. "Furi–Pera fixed point theorems in Banach algebras with applications." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 47.1 (2008): 55-75. <http://eudml.org/doc/32472>.
@article{Djebali2008,
abstract = {In this work, we establish new Furi–Pera type fixed point theorems for the sum and the product of abstract nonlinear operators in Banach algebras; one of the operators is completely continuous and the other one is $\{\mathcal \{D\}\}$-Lipchitzian. The Kuratowski measure of noncompactness is used together with recent fixed point principles. Applications to solving nonlinear functional integral equations are given. Our results complement and improve recent ones in [10], [11], [17].},
author = {Djebali, Smaïl, Hammache, Karima},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {banach algebra; Furi–Pera condition; fixed point theorem; measure of noncompactness; integral equations; Banach algebra; fixed point; Furi-Pera condition},
language = {eng},
number = {1},
pages = {55-75},
publisher = {Palacký University Olomouc},
title = {Furi–Pera fixed point theorems in Banach algebras with applications},
url = {http://eudml.org/doc/32472},
volume = {47},
year = {2008},
}
TY - JOUR
AU - Djebali, Smaïl
AU - Hammache, Karima
TI - Furi–Pera fixed point theorems in Banach algebras with applications
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2008
PB - Palacký University Olomouc
VL - 47
IS - 1
SP - 55
EP - 75
AB - In this work, we establish new Furi–Pera type fixed point theorems for the sum and the product of abstract nonlinear operators in Banach algebras; one of the operators is completely continuous and the other one is ${\mathcal {D}}$-Lipchitzian. The Kuratowski measure of noncompactness is used together with recent fixed point principles. Applications to solving nonlinear functional integral equations are given. Our results complement and improve recent ones in [10], [11], [17].
LA - eng
KW - banach algebra; Furi–Pera condition; fixed point theorem; measure of noncompactness; integral equations; Banach algebra; fixed point; Furi-Pera condition
UR - http://eudml.org/doc/32472
ER -
References
top- Agarwal R. A., Meehan M., O’Regan D.: Fixed Point Theory, Applications. Cambridge Tracts in Mathematics, Vol. 141, Cambridge University Press, , 2001. MR1825411
- Bainov D., Simeonov P.: Integral Inequalities, Applications., Kluwer Academic Publishers, , 1992. (1992) MR1171448
- Banas J., Goebel K.: Measure of Noncompactness in Banach Spaces. Math., Appli., Vol. 57, Marcel Dekker, New York, , 1980. (1980) MR0591679
- Banas J., Knap Z., Measure of noncompactness and nonlinear integral equations of convolution type, J. Math. Anal. Appl. 146 (1990), 353–362. (1990) MR1043105
- Boyd D. W., Wong J. S. W., On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464. (1969) Zbl0175.44903MR0239559
- Burton T. A., A fixed point theorem of Krasnozels’kĭi, Appl. Math. Lett. 11 (1998), 85–88. (1998) MR1490385
- Deimling K.: Nonlinear Functional Analysis., Springer Verlag, Berlin–Tokyo, , 1985. (1985) MR0787404
- Djebali S., Moussaoui T., A class of second order BVPs on infinite intervals, Elec. Jour. Qual. Theo. Diff. Eq. 4 (2006), 1–19. Zbl1134.34018MR2219348
- Dhage B. C., On some variants of Schauder’s fixed point principle and applications to nonlinear integral equations, Jour. Math. Phys. Sci. 2, 5 (1988), 603–611. (1988) Zbl0673.47043MR0967242
- Dhage B. C., On a fixed point theorem in Banach algebras with applications, Appl. Math. Lett. 18 (2005), 273–280. Zbl1092.47045MR2121036
- Dhage B. C., Some nonlinear alternatives in Banach algebras with applications I, Nonlinear Studies 12, 3 (2005), 271–281. Zbl1092.47046MR2163347
- Dhage B. C., Ntouyas S. K., Existence results for nonlinear functional integral equations via a fixed point theorem of Krasnozels’kĭi–Schaefer type, Nonlinear Studies 9, 3 (2002), 307–317. MR1918909
- Dhage B. C., O’Regan D., A fixed point theorem in Banach algebras with applications to functional integral equations, Funct. Diff. Equ. 7, 3-4 (2000), 259–267. Zbl1040.45003MR1940503
- Furi M., Pera P., A continuation method on locally convex spaces and applications to ODE on noncompact intervals, Annales Polonici Mathematici 47 (1987), 331–346. (1987) MR0927581
- Krasnozels’kĭi M. A.: Positive Solutions of Operator Equations., Noordhoff, Groningen, , 1964. (1964)
- Krasnozels’kĭi M. A.: Integral Operators in Space of Summable Functions., Noordhoff, Leyden, , 1976. (1976)
- O’Regan D., Fixed-point theory for the sum of two operators, Appl. Math. Lett. 9 (1996), 1–8. (1996) Zbl0858.34049
- Smart D. R.: Fixed point Theorems., Cambridge University Press, , 1974. (1974) MR0467717
- Zeidler E.: Nonlinear Functional Analysis, its Applications. Vol. I: Fixed Point Theorems., Springer Verlag, New York, , 1986. (1986) MR0816732
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.