On the geometry of frame bundles

Kamil Niedziałomski

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 3, page 197-206
  • ISSN: 0044-8753

Abstract

top
Let ( M , g ) be a Riemannian manifold, L ( M ) its frame bundle. We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the tangent bundle T M . We compute the Levi–Civita connection and curvatures of these metrics.

How to cite

top

Niedziałomski, Kamil. "On the geometry of frame bundles." Archivum Mathematicum 048.3 (2012): 197-206. <http://eudml.org/doc/246287>.

@article{Niedziałomski2012,
abstract = {Let $(M,g)$ be a Riemannian manifold, $L(M)$ its frame bundle. We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the tangent bundle $TM$. We compute the Levi–Civita connection and curvatures of these metrics.},
author = {Niedziałomski, Kamil},
journal = {Archivum Mathematicum},
keywords = {Riemannian manifold; frame bundle; tangent bundle; natural metric; Riemannian manifold; frame bundle; tangent bundle; natural metric},
language = {eng},
number = {3},
pages = {197-206},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the geometry of frame bundles},
url = {http://eudml.org/doc/246287},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Niedziałomski, Kamil
TI - On the geometry of frame bundles
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 3
SP - 197
EP - 206
AB - Let $(M,g)$ be a Riemannian manifold, $L(M)$ its frame bundle. We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the tangent bundle $TM$. We compute the Levi–Civita connection and curvatures of these metrics.
LA - eng
KW - Riemannian manifold; frame bundle; tangent bundle; natural metric; Riemannian manifold; frame bundle; tangent bundle; natural metric
UR - http://eudml.org/doc/246287
ER -

References

top
  1. Abbassi, M. T. K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno) 41 (1) (2005), 71–92. (2005) Zbl1114.53015MR2142144
  2. Baird, P., Wood, J. C., Harmonic morphisms between Riemannian manifolds, Oxford University Press, Oxford, 2003. (2003) Zbl1055.53049MR2044031
  3. Benyounes, M., Loubeau, E., Wood, C. M., 10.1016/j.difgeo.2006.11.010, Differential Geom. Appl. 25 (3) (2007), 322–334. (2007) Zbl1128.53037MR2330461DOI10.1016/j.difgeo.2006.11.010
  4. Benyounes, M., Loubeau, E., Wood, C. M., 10.3836/tjm/1264170234, Tokyo J. Math. 32 (2) (2009), 287–312. (2009) Zbl1200.53025MR2589947DOI10.3836/tjm/1264170234
  5. Cordero, L. A., de Leon, M., 10.1007/BF02844834, Rend. Circ. Mat. Palermo (2) 32 (2) (1983), 236–271. (1983) MR0729099DOI10.1007/BF02844834
  6. Cordero, L. A., de Leon, M., On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold, J. Math. Pures Appl. (9) 65 (1) (1986), 81–91. (1986) MR0844241
  7. Dombrowski, P., On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73–88. (1962) Zbl0105.16002MR0141050
  8. Kowalski, O., Sekizawa, M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles. A classification, Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. (1988) MR0974641
  9. Kowalski, O., Sekizawa, M., On curvatures of linear frame bundles with naturally lifted metrics, Rend. Sem. Mat. Univ. Politec. Torino 63 (3) (2005), 283–295. (2005) Zbl1141.53020MR2202049
  10. Kowalski, O., Sekizawa, M., 10.1002/mana.200610715, Math. Nachr. 281 (2008), no. 12, 1799–1809 281 (12) (2008), 1799–1809. (2008) Zbl1158.53015MR2473330DOI10.1002/mana.200610715
  11. Kowalski, O., Sekizawa, M., 10.1007/s10455-007-9091-7, Ann. Global Anal. Geom. 33 (4) (2008), 357–371. (2008) Zbl1141.53023MR2395192DOI10.1007/s10455-007-9091-7
  12. Mok, K. P., On the differential geometry of frame bundles of Riemannian manifolds, J. Reine Angew. Math. 302 (1978), 16–31. (1978) Zbl0378.53016MR0511689

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.