# Simple Monte Carlo integration with respect to Bernoulli convolutions

David M. Gómez; Pablo Dartnell

Applications of Mathematics (2012)

- Volume: 57, Issue: 6, page 617-626
- ISSN: 0862-7940

## Access Full Article

top## Abstract

top## How to cite

topGómez, David M., and Dartnell, Pablo. "Simple Monte Carlo integration with respect to Bernoulli convolutions." Applications of Mathematics 57.6 (2012): 617-626. <http://eudml.org/doc/246303>.

@article{Gómez2012,

abstract = {We apply a Markov chain Monte Carlo method to approximate the integral of a continuous function with respect to the asymmetric Bernoulli convolution and, in particular, with respect to a binomial measure. This method---inspired by a cognitive model of memory decay---is extremely easy to implement, because it samples only Bernoulli random variables and combines them in a simple way so as to obtain a sequence of empirical measures converging almost surely to the Bernoulli convolution. We give explicit bounds for the bias and the standard deviation for this approximation, and present numerical simulations showing that it outperforms a general Monte Carlo method using the same number of Bernoulli random samples.},

author = {Gómez, David M., Dartnell, Pablo},

journal = {Applications of Mathematics},

keywords = {MCMC; Bernoulli convolution; binomial measure; Monte Carlo integration; empirical measures; Bernoulli convolution; binomial measure; Monte Carlo integration; empirical measures},

language = {eng},

number = {6},

pages = {617-626},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Simple Monte Carlo integration with respect to Bernoulli convolutions},

url = {http://eudml.org/doc/246303},

volume = {57},

year = {2012},

}

TY - JOUR

AU - Gómez, David M.

AU - Dartnell, Pablo

TI - Simple Monte Carlo integration with respect to Bernoulli convolutions

JO - Applications of Mathematics

PY - 2012

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 57

IS - 6

SP - 617

EP - 626

AB - We apply a Markov chain Monte Carlo method to approximate the integral of a continuous function with respect to the asymmetric Bernoulli convolution and, in particular, with respect to a binomial measure. This method---inspired by a cognitive model of memory decay---is extremely easy to implement, because it samples only Bernoulli random variables and combines them in a simple way so as to obtain a sequence of empirical measures converging almost surely to the Bernoulli convolution. We give explicit bounds for the bias and the standard deviation for this approximation, and present numerical simulations showing that it outperforms a general Monte Carlo method using the same number of Bernoulli random samples.

LA - eng

KW - MCMC; Bernoulli convolution; binomial measure; Monte Carlo integration; empirical measures; Bernoulli convolution; binomial measure; Monte Carlo integration; empirical measures

UR - http://eudml.org/doc/246303

ER -

## References

top- Andrieu, C., Freitas, N. De, Doucet, A., Jordan, M. I., 10.1023/A:1020281327116, Mach. Learn. 50 (2003), 5-43. (2003) Zbl1033.68081DOI10.1023/A:1020281327116
- Barnsley, M. F., Demko, S., 10.1098/rspa.1985.0057, Proc. R. Soc. Lond., Ser. A 399 (1985), 243-275. (1985) Zbl0588.28002MR0799111DOI10.1098/rspa.1985.0057
- Berkes, I., Csáki, E., 10.1016/S0304-4149(01)00078-3, Stoch. Proc. Appl. 94 (2001), 105-134. (2001) Zbl1053.60022MR1835848DOI10.1016/S0304-4149(01)00078-3
- Calabrò, F., Esposito, A. Corbo, 10.1007/s10543-008-0168-x, BIT 48 (2008), 473-491 2447981. (2008) MR2447981DOI10.1007/s10543-008-0168-x
- Dovgoshey, O., Martio, O., Ryazanov, V., Vuorinen, M., 10.1016/j.exmath.2005.05.002, Expo. Math. 24 (2006), 1-37. (2006) Zbl1098.26006MR2195181DOI10.1016/j.exmath.2005.05.002
- Jessen, B., Wintner, A., 10.1090/S0002-9947-1935-1501802-5, Trans. Am. Math. Soc. 38 (1935), 48-88. (1935) Zbl0014.15401MR1501802DOI10.1090/S0002-9947-1935-1501802-5
- Kalos, M. H., Whitlock, P. A., Monte Carlo Methods. Vol. I: Basics, Wiley New York (1986). (1986) MR0864827
- Mandelbrot, B. B., Calvet, L., Fisher, A., A multifractal model of asset returns, Cowles Foundation Discussion Papers: 1164 (1997), Retrieved from http://users.math.yale.edu/users/mandelbrot/web_pdfs/Cowles1164.pdf (last access August 21, 2012). (1997)
- Peres, Y., Schlag, W., Solomyak, B., Sixty years of Bernoulli convolutions. Fractal Geometry and Stochastics II. Proceedings of the 2nd conference Greifswald/Koserow, Germany, August 28--September 2, 1998. Eds. C. Bandt at al, Prog. Probab. 46 (2000), 39-65. (2000) MR1785620
- Riedi, R. H., Introduction to multifractals, Techn. Rep Rice Univ., October 26, 1999 Retrieved from http://rudolf.riedi.home.hefr.ch/Publ/PDF/intro.pdf (last access August 21, 2012).
- Strichartz, R. S., Taylor, A., Zhang, T., 10.1080/10586458.1995.10504313, Exp. Math. 4 (1995), 101-128. (1995) Zbl0860.28005MR1377413DOI10.1080/10586458.1995.10504313
- White, K. G., 10.3758/BF03192887, Animal Learning & Behavior 29 (2001), 193-207. (2001) DOI10.3758/BF03192887

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.