Weighted endpoint estimates for commutators of fractional integrals

David Cruz-Uribe; Alberto Fiorenza

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 153-160
  • ISSN: 0011-4642

Abstract

top
Given α , 0 < α < n , and b B M O , we give sufficient conditions on weights for the commutator of the fractional integral operator, [ b , I α ] , to satisfy weighted endpoint inequalities on n and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on n .

How to cite

top

Cruz-Uribe, David, and Fiorenza, Alberto. "Weighted endpoint estimates for commutators of fractional integrals." Czechoslovak Mathematical Journal 57.1 (2007): 153-160. <http://eudml.org/doc/31120>.

@article{Cruz2007,
abstract = {Given $\alpha $, $0<\alpha <n$, and $b\in \{\mathrm \{B\}MO\}$, we give sufficient conditions on weights for the commutator of the fractional integral operator, $[b,I_\alpha ]$, to satisfy weighted endpoint inequalities on $\mathbb \{R\}^n$ and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on $\mathbb \{R\}^n$.},
author = {Cruz-Uribe, David, Fiorenza, Alberto},
journal = {Czechoslovak Mathematical Journal},
keywords = {fractional integrals; commutators; BMO; weights; Orlicz spaces; maximal functions; fractional integrals; commutators; BMO; weights; Orlicz spaces; maximal functions},
language = {eng},
number = {1},
pages = {153-160},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weighted endpoint estimates for commutators of fractional integrals},
url = {http://eudml.org/doc/31120},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Cruz-Uribe, David
AU - Fiorenza, Alberto
TI - Weighted endpoint estimates for commutators of fractional integrals
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 153
EP - 160
AB - Given $\alpha $, $0<\alpha <n$, and $b\in {\mathrm {B}MO}$, we give sufficient conditions on weights for the commutator of the fractional integral operator, $[b,I_\alpha ]$, to satisfy weighted endpoint inequalities on $\mathbb {R}^n$ and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on $\mathbb {R}^n$.
LA - eng
KW - fractional integrals; commutators; BMO; weights; Orlicz spaces; maximal functions; fractional integrals; commutators; BMO; weights; Orlicz spaces; maximal functions
UR - http://eudml.org/doc/31120
ER -

References

top
  1. 10.1512/iumj.1982.31.31002, Indiana Math. J. 31 (1982), 7–16. (1982) Zbl0523.42015MR0642611DOI10.1512/iumj.1982.31.31002
  2. 10.1515/GMJ.2000.33, Georgian Math. J. 7 (2000), 33–42. (2000) MR1768043DOI10.1515/GMJ.2000.33
  3. 10.5565/PUBLMAT_47103_05, Publ. Mat. 47 (2003), 103–131. (2003) MR1970896DOI10.5565/PUBLMAT_47103_05
  4. Fourier Analysis. Grad. Studies Math. Vol. 29, Am. Math. Soc., Providence, 2000. (2000) MR1800316
  5. Weighted Norm Inequalities and Related Topics. Math. Studies Vol. 116, North Holland, Amsterdam, 1985. (1985) MR0848136
  6. Orlicz spaces and interpolation, Seminars in Mathematics  5, IMECC, Universidad Estadual de Campinas, Campinas, 1989. (1989) Zbl0874.46022MR2264389
  7. 10.1090/S0002-9947-1974-0340523-6, Trans. Am. Math. Soc. 192 (1974), 261–274. (1974) MR0340523DOI10.1090/S0002-9947-1974-0340523-6
  8. On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L p -spaces with different weights, Proc. London Math. Soc. 71 (1995), 135–157. (1995) MR1327936
  9. 10.1006/jfan.1995.1027, J.  Funct. Anal. 128 (1995), 163–185. (1995) MR1317714DOI10.1006/jfan.1995.1027
  10. Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. (1991) MR1113700

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.