# A viewpoint on amalgamation classes

Silvia Barbina; Domenico Zambella

Commentationes Mathematicae Universitatis Carolinae (2010)

- Volume: 51, Issue: 4, page 681-691
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topBarbina, Silvia, and Zambella, Domenico. "A viewpoint on amalgamation classes." Commentationes Mathematicae Universitatis Carolinae 51.4 (2010): 681-691. <http://eudml.org/doc/246403>.

@article{Barbina2010,

abstract = {We give a self-contained introduction to universal homogeneous models (also known as rich models) in a general context where the notion of morphism is taken as primitive. We produce an example of an amalgamation class where each connected component has a saturated rich model but the theory of the rich models is not model-complete.},

author = {Barbina, Silvia, Zambella, Domenico},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {model theory; universal homogeneous model; model companion; amalgamation class; universal homogeneous model; model companion; amalgamation class},

language = {eng},

number = {4},

pages = {681-691},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {A viewpoint on amalgamation classes},

url = {http://eudml.org/doc/246403},

volume = {51},

year = {2010},

}

TY - JOUR

AU - Barbina, Silvia

AU - Zambella, Domenico

TI - A viewpoint on amalgamation classes

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 2010

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 51

IS - 4

SP - 681

EP - 691

AB - We give a self-contained introduction to universal homogeneous models (also known as rich models) in a general context where the notion of morphism is taken as primitive. We produce an example of an amalgamation class where each connected component has a saturated rich model but the theory of the rich models is not model-complete.

LA - eng

KW - model theory; universal homogeneous model; model companion; amalgamation class; universal homogeneous model; model companion; amalgamation class

UR - http://eudml.org/doc/246403

ER -

## References

top- Baldwin J., Shelah S., 10.1305/ndjfl/1063372196, Notre Dame J. Formal Logic 42 (2001), no. 3, 129–142. Zbl1034.03040MR2010177DOI10.1305/ndjfl/1063372196
- Barbina S., Zambella D., Generic expansions of countable models, preprint, http://arxiv.org/abs/1011.0120.
- Baudisch A., Hils M., Pizarro A.M., Wagner F.O., 10.1017/S1474748008000091, J. Inst. Math. Jussieu 8 (2009), no. 3, 415–443. Zbl1179.03041MR2516302DOI10.1017/S1474748008000091
- Chatzidakis Z., Pillay A., 10.1016/S0168-0072(98)00021-9, Ann. Pure Appl. Logic 95 (1998), no. 1–3, 71–92. Zbl0929.03043MR1650667DOI10.1016/S0168-0072(98)00021-9
- Goode J.B., Hrushovski's geometries, in Proceedings of the 7th Easter Conference on Model Theory (Wendisch-Rietz, 1989), Humboldt-Univ., Berlin, 1989, pp. 106–117. Zbl0689.03016MR1045014
- Hrushovski E., 10.1016/0168-0072(93)90171-9, Ann. Pure Appl. Logic 62 (1993), no. 2, 147–166. Zbl0804.03020MR1226304DOI10.1016/0168-0072(93)90171-9
- Kueker D.W., Laskowski M.C., 10.1305/ndjfl/1093636094, Notre Dame J. Formal Logic 33 (1992), no. 2, 175–183. Zbl0768.03010MR1167973DOI10.1305/ndjfl/1093636094
- Lascar D., 10.1007/BF01370694, Arch. Math. Logic 31 (1991), no. 1, 55–68. Zbl0766.03022MR1126353DOI10.1007/BF01370694
- Poizat B., 10.2307/2586634, J. Symbolic Logic 64 (1999), no. 3, 1339–1355. Zbl0938.03058MR1779766DOI10.2307/2586634
- Zambella D., Krull dimension of types in a class of first-order theories, Turkish J. Math.(to appear). MR2839726

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.