A viewpoint on amalgamation classes
Silvia Barbina; Domenico Zambella
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 4, page 681-691
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBarbina, Silvia, and Zambella, Domenico. "A viewpoint on amalgamation classes." Commentationes Mathematicae Universitatis Carolinae 51.4 (2010): 681-691. <http://eudml.org/doc/246403>.
@article{Barbina2010,
abstract = {We give a self-contained introduction to universal homogeneous models (also known as rich models) in a general context where the notion of morphism is taken as primitive. We produce an example of an amalgamation class where each connected component has a saturated rich model but the theory of the rich models is not model-complete.},
author = {Barbina, Silvia, Zambella, Domenico},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {model theory; universal homogeneous model; model companion; amalgamation class; universal homogeneous model; model companion; amalgamation class},
language = {eng},
number = {4},
pages = {681-691},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A viewpoint on amalgamation classes},
url = {http://eudml.org/doc/246403},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Barbina, Silvia
AU - Zambella, Domenico
TI - A viewpoint on amalgamation classes
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 4
SP - 681
EP - 691
AB - We give a self-contained introduction to universal homogeneous models (also known as rich models) in a general context where the notion of morphism is taken as primitive. We produce an example of an amalgamation class where each connected component has a saturated rich model but the theory of the rich models is not model-complete.
LA - eng
KW - model theory; universal homogeneous model; model companion; amalgamation class; universal homogeneous model; model companion; amalgamation class
UR - http://eudml.org/doc/246403
ER -
References
top- Baldwin J., Shelah S., 10.1305/ndjfl/1063372196, Notre Dame J. Formal Logic 42 (2001), no. 3, 129–142. Zbl1034.03040MR2010177DOI10.1305/ndjfl/1063372196
- Barbina S., Zambella D., Generic expansions of countable models, preprint, http://arxiv.org/abs/1011.0120.
- Baudisch A., Hils M., Pizarro A.M., Wagner F.O., 10.1017/S1474748008000091, J. Inst. Math. Jussieu 8 (2009), no. 3, 415–443. Zbl1179.03041MR2516302DOI10.1017/S1474748008000091
- Chatzidakis Z., Pillay A., 10.1016/S0168-0072(98)00021-9, Ann. Pure Appl. Logic 95 (1998), no. 1–3, 71–92. Zbl0929.03043MR1650667DOI10.1016/S0168-0072(98)00021-9
- Goode J.B., Hrushovski's geometries, in Proceedings of the 7th Easter Conference on Model Theory (Wendisch-Rietz, 1989), Humboldt-Univ., Berlin, 1989, pp. 106–117. Zbl0689.03016MR1045014
- Hrushovski E., 10.1016/0168-0072(93)90171-9, Ann. Pure Appl. Logic 62 (1993), no. 2, 147–166. Zbl0804.03020MR1226304DOI10.1016/0168-0072(93)90171-9
- Kueker D.W., Laskowski M.C., 10.1305/ndjfl/1093636094, Notre Dame J. Formal Logic 33 (1992), no. 2, 175–183. Zbl0768.03010MR1167973DOI10.1305/ndjfl/1093636094
- Lascar D., 10.1007/BF01370694, Arch. Math. Logic 31 (1991), no. 1, 55–68. Zbl0766.03022MR1126353DOI10.1007/BF01370694
- Poizat B., 10.2307/2586634, J. Symbolic Logic 64 (1999), no. 3, 1339–1355. Zbl0938.03058MR1779766DOI10.2307/2586634
- Zambella D., Krull dimension of types in a class of first-order theories, Turkish J. Math.(to appear). MR2839726
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.