On the -valued categories of --ordered sets
Kybernetika (2012)
- Volume: 48, Issue: 1, page 144-164
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGrigorenko, Olga. "On the $L$-valued categories of $L$-$E$-ordered sets." Kybernetika 48.1 (2012): 144-164. <http://eudml.org/doc/246439>.
@article{Grigorenko2012,
abstract = {The aim of this paper is to construct an $L$-valued category whose objects are $L$-$E$-ordered sets. To reach the goal, first, we construct a category whose objects are $L$-$E$-ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an $L$-valued category. Further we investigate the properties of this category, namely, we observe some special objects, special morphisms and special constructions.},
author = {Grigorenko, Olga},
journal = {Kybernetika},
keywords = {category; $L$-valued category; fuzzy order relation; aggregation function; commutative -monoid; epimorphism; extensional map; lattice-valued category; lattice-valued equality; lattice-valued partial order; monomorphism; product of objects of a category; residuation; t-norm; fuzzy order relation; aggregation functions},
language = {eng},
number = {1},
pages = {144-164},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the $L$-valued categories of $L$-$E$-ordered sets},
url = {http://eudml.org/doc/246439},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Grigorenko, Olga
TI - On the $L$-valued categories of $L$-$E$-ordered sets
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 1
SP - 144
EP - 164
AB - The aim of this paper is to construct an $L$-valued category whose objects are $L$-$E$-ordered sets. To reach the goal, first, we construct a category whose objects are $L$-$E$-ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an $L$-valued category. Further we investigate the properties of this category, namely, we observe some special objects, special morphisms and special constructions.
LA - eng
KW - category; $L$-valued category; fuzzy order relation; aggregation function; commutative -monoid; epimorphism; extensional map; lattice-valued category; lattice-valued equality; lattice-valued partial order; monomorphism; product of objects of a category; residuation; t-norm; fuzzy order relation; aggregation functions
UR - http://eudml.org/doc/246439
ER -
References
top- J. Adamek, H. Herrlich, G. E. Strecker, Abstract and concrete categories: The joy of cats., Reprints in Theory and Applications of Categories, No. 17 2006. (2006) Zbl1113.18001MR2240597
- R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles., Kluwer Academic/Plenum Press, New York 2002. (2002) Zbl1067.03059
- U. Bodenhofer, 10.1142/S0218488500000411, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8(5) (2000), 593-610. (2000) Zbl1113.03333MR1784649DOI10.1142/S0218488500000411
- U. Bodenhofer, Representations and constructions of similarity-based fuzzy orderings., Fuzzy Sets and Systems 137 (2003), 113-136. (2003) Zbl1052.91032MR1992702
- U. Bodenhofer, J. Küng, 10.1007/s00500-003-0308-9, Soft Computing 8 (2004), 7, 512-522. (2004) Zbl1063.68047MR1784649DOI10.1007/s00500-003-0308-9
- U. Bodenhofer, B. De Baets, J. Fodor, A compendium of fuzzy weak orders: representations and constructions., Fuzzy Sets and Systems 158 (2007), 593-610. (2007) Zbl1119.06001MR2302639
- M. Demirci, A theory of vague lattices based on many-valued equivalence relations - I: General representation results., Fuzzy Sets and Systems 151 (2005), 3, 437-472. (2005) Zbl1067.06006MR2126168
- J. Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support., Kluwer Academic Publishers, Dordrecht 1994. (1994) Zbl0827.90002
- J. A. Goguen, L-fuzzy sets., J. Math. Anal. Appl. 18 (1967), 338-353. (1967) Zbl0145.24404MR0224391
- O. Grigorenko, Categorical aspects of aggregation of fuzzy relations., In: Abstracts 10th Conference on Fuzzy Set Theory and Applications, 2010, p. 61. (2010)
- O. Grigorenko, Degree of monotonicity in aggregation process., In: Proc. 2010 IEEE International Conference on Fuzzy Systems, pp. 1080-1087. (2010)
- H. Herrlich, G. E. Strecker, Category Theory., Second edition. Heldermann Verlag, Berlin 1978. (1978) MR2377903
- U. Höhle, N. Blanchard, 10.1016/0020-0255(85)90045-3, Inform. Sci. 35 (1985), 133-144. (1985) Zbl0576.06004MR0794764DOI10.1016/0020-0255(85)90045-3
- U. Höhle, 10.1016/0165-0114(88)90080-2, Fuzzy Sets and Systems 27 (1988), 31-44. (1988) Zbl0666.18002MR0950448DOI10.1016/0165-0114(88)90080-2
- U. Höhle, M-valued sets and sheaves over integral commutative cl-monoids., In: Applications of Category Theory to Fuzzy Subsets (S. E. Rodabaugh et al., eds.), Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 33-72. Zbl0766.03037MR1154568
- E. P. Klement, R. Mesiar, E. Pap, Triangular Norms., Kluwer Academic Publishers, The Netherlands 2002. (2002) Zbl1012.03033MR1790096
- H. L. Lai, D. X. Zhang, Many-valued complete distributivity., arXiv:math.CT/0603590, 2006. (2006)
- F. W. Lawvere, 10.1007/BF02924844, Rend. Sem. Mat. Fis. Milano 43 (1973), 135-166. Also Reprints in Theory and Applications of Categories 1 (2002). (1973) MR0352214DOI10.1007/BF02924844
- F. W. Lawvere, Taking categories seriously., Revisita Columbiana de Matemáticas XX (1986), 147-178. Also Reprints in Theory and Applications of Categories 8 (2005). (1986) Zbl0648.18001MR0948965
- O. Lebedeva (Grigorenko), Fuzzy order relation and fuzzy ordered set category., In: New Dimensions in fuzzy logic and related technologies. Proc. 5th EUSFLAT Conference, Ostrava 2007, pp. 403-407 (2007)
- S. Ovchinnikov, 10.1016/0165-0114(91)90048-U, Fuzzy Sets and Systems 40 (1991), 1, 107-126. (1991) Zbl0725.04003MR1103658DOI10.1016/0165-0114(91)90048-U
- A. Sostak, Fuzzy categories versus categories of fuzzy structured sets: Elements of the theory of fuzzy categories., Mathematik-Arbeitspapiere, Universitat Bremen 48 (1997), 407-437. (1997)
- A. Sostak, -valued categories: Generalities and examples related to algebra and topology., In: Categorical Structures and Their Applications (W. Gahler and G. Preuss, eds.), World Scientific 2004, pp. 291-312. (2004) Zbl1068.18001MR2127008
- L. A. Zadeh, 10.1016/S0020-0255(71)80005-1, Inform. Sci. 3 (1971), 177-200. (1971) Zbl0218.02058MR0297650DOI10.1016/S0020-0255(71)80005-1
- L. A. Zadeh, 10.1016/S0019-9958(65)90241-X, Inform. Control 8 (1965), 338-353. (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.