Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 4, page 577-593
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topČerný, Robert. "Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces." Commentationes Mathematicae Universitatis Carolinae 51.4 (2010): 577-593. <http://eudml.org/doc/246484>.
@article{Černý2010,
abstract = {We prove that the generalized Trudinger inequality for Orlicz-Sobolev spaces embedded into multiple exponential spaces implies a version of an inequality due to Brézis and Wainger.},
author = {Černý, Robert},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz spaces; Sobolev inequalities; Orlicz space; Sobolev space; critical embedding; Trudinger inequality; rearrangement invariant Banach function space; truncation property},
language = {eng},
number = {4},
pages = {577-593},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces},
url = {http://eudml.org/doc/246484},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Černý, Robert
TI - Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 4
SP - 577
EP - 593
AB - We prove that the generalized Trudinger inequality for Orlicz-Sobolev spaces embedded into multiple exponential spaces implies a version of an inequality due to Brézis and Wainger.
LA - eng
KW - Orlicz spaces; Sobolev inequalities; Orlicz space; Sobolev space; critical embedding; Trudinger inequality; rearrangement invariant Banach function space; truncation property
UR - http://eudml.org/doc/246484
ER -
References
top- Brézis H., Wainger S., 10.1080/03605308008820154, Comm. Partial Differential Equations 5 (1980), no. 7, 773–789. MR0579997DOI10.1080/03605308008820154
- Černý R., Mašková S., 10.1007/s10587-010-0048-9, Czechoslovak Math. J. 60 (2010), no. 3, 751–782. MR2672414DOI10.1007/s10587-010-0048-9
- Cianchi A., 10.1512/iumj.1996.45.1958, Indiana Univ. Math. J. 45 (1996), 39–65. Zbl0860.46022MR1406683DOI10.1512/iumj.1996.45.1958
- Cianchi A., 10.4171/RMI/396, Rev. Mat. Iberoamericana 20 (2004), 427–474. Zbl1061.46031MR2073127DOI10.4171/RMI/396
- Edmunds D.E., Gurka P., Opic B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 (1995), 19–43. Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
- Edmunds D.E., Gurka P., Opic B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), 151–181. Zbl0829.47024MR1347439
- Edmunds D.E., Gurka P., Opic B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995–1009. Zbl0860.46024MR1415818
- Edmunds D.E., Kerman R., Pick L., 10.1006/jfan.1999.3508, J. Funct. Anal. 170 (2000), no. 2, 307–355. Zbl0955.46019MR1740655DOI10.1006/jfan.1999.3508
- Fusco N., Lions P.L., Sbordone C., 10.1090/S0002-9939-96-03136-X, Proc. Amer. Math. Soc. 124 (1996), 561–565. Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
- Hajlasz P., Koskela P., Sobolev met Poincaré, Memoirs of the Amer. Math. Soc 145 (2000), 101pp. Zbl0954.46022MR1683160
- Hansson K., Imbeddings theorems of Sobolev type in potential theory, Math. Scand. 49 (1979), 77–102. MR0567435
- Hedberg L.I., 10.1090/S0002-9939-1972-0312232-4, Proc. Amer. Math. Soc. 36 (1972), 505–512. Zbl0283.26003MR0312232DOI10.1090/S0002-9939-1972-0312232-4
- Hempel J.A., Morris G.R., Trudinger N.S., 10.1017/S0004972700046074, Bull. Austral. Math. Soc. 3 (1970), 369–373. Zbl0205.12801MR0280998DOI10.1017/S0004972700046074
- Hencl S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 (2003), no. 1, 196–227. Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
- Hencl S., 10.1016/j.jmaa.2005.07.041, J. Math. Anal. Appl. 326 (2006), no. 1, 336–348. Zbl1115.46026MR2239242DOI10.1016/j.jmaa.2005.07.041
- Koskela P., Onninen J., 10.1016/S0022-247X(02)00465-1, J. Math. Anal. Appl. 278 (2003), 324–334. Zbl1019.26003MR1974010DOI10.1016/S0022-247X(02)00465-1
- Maz'ya V., Sobolev Spaces, Springer, Berlin, 1975. Zbl1152.46002MR0817985
- Maz'ya V., A theorem on multidimensional Schrödinger operator, (Russian), Izv. Akad. Nauk 28 (1964), 1145–1172.
- Malý J., Pick L., 10.1090/S0002-9939-01-06060-9, Proc. Amer. Math. Soc. 130 (2002), no. 2, 555–563. MR1862137DOI10.1090/S0002-9939-01-06060-9
- O'Neil R., 10.1215/S0012-7094-63-03015-1, Duke Math. J. 30 (1963), 129–142. Zbl0178.47701MR0146673DOI10.1215/S0012-7094-63-03015-1
- Peetre J., 10.5802/aif.232, Ann. Inst. Fourier 16 (1966), 279–317. Zbl0151.17903MR0221282DOI10.5802/aif.232
- Pohozhaev S.I., On the imbedding Sobolev theorem for , Doklady Conference, Section Math. Moscow Power Inst. (1965), 158–170.
- Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York, 1991. Zbl0724.46032MR1113700
- Strichartz R.S., 10.1512/iumj.1972.21.21066, Indiana Univ. Math. J. 21 (1972), 841–842. MR0293389DOI10.1512/iumj.1972.21.21066
- Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–484. Zbl0163.36402MR0216286
- Yudovič V.I., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Doklady 2 (1961), 746–749.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.