Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces

Robert Černý

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 4, page 577-593
  • ISSN: 0010-2628

Abstract

top
We prove that the generalized Trudinger inequality for Orlicz-Sobolev spaces embedded into multiple exponential spaces implies a version of an inequality due to Brézis and Wainger.

How to cite

top

Černý, Robert. "Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces." Commentationes Mathematicae Universitatis Carolinae 51.4 (2010): 577-593. <http://eudml.org/doc/246484>.

@article{Černý2010,
abstract = {We prove that the generalized Trudinger inequality for Orlicz-Sobolev spaces embedded into multiple exponential spaces implies a version of an inequality due to Brézis and Wainger.},
author = {Černý, Robert},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz spaces; Sobolev inequalities; Orlicz space; Sobolev space; critical embedding; Trudinger inequality; rearrangement invariant Banach function space; truncation property},
language = {eng},
number = {4},
pages = {577-593},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces},
url = {http://eudml.org/doc/246484},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Černý, Robert
TI - Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 4
SP - 577
EP - 593
AB - We prove that the generalized Trudinger inequality for Orlicz-Sobolev spaces embedded into multiple exponential spaces implies a version of an inequality due to Brézis and Wainger.
LA - eng
KW - Orlicz spaces; Sobolev inequalities; Orlicz space; Sobolev space; critical embedding; Trudinger inequality; rearrangement invariant Banach function space; truncation property
UR - http://eudml.org/doc/246484
ER -

References

top
  1. Brézis H., Wainger S., 10.1080/03605308008820154, Comm. Partial Differential Equations 5 (1980), no. 7, 773–789. MR0579997DOI10.1080/03605308008820154
  2. Černý R., Mašková S., 10.1007/s10587-010-0048-9, Czechoslovak Math. J. 60 (2010), no. 3, 751–782. MR2672414DOI10.1007/s10587-010-0048-9
  3. Cianchi A., 10.1512/iumj.1996.45.1958, Indiana Univ. Math. J. 45 (1996), 39–65. Zbl0860.46022MR1406683DOI10.1512/iumj.1996.45.1958
  4. Cianchi A., 10.4171/RMI/396, Rev. Mat. Iberoamericana 20 (2004), 427–474. Zbl1061.46031MR2073127DOI10.4171/RMI/396
  5. Edmunds D.E., Gurka P., Opic B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 (1995), 19–43. Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
  6. Edmunds D.E., Gurka P., Opic B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), 151–181. Zbl0829.47024MR1347439
  7. Edmunds D.E., Gurka P., Opic B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995–1009. Zbl0860.46024MR1415818
  8. Edmunds D.E., Kerman R., Pick L., 10.1006/jfan.1999.3508, J. Funct. Anal. 170 (2000), no. 2, 307–355. Zbl0955.46019MR1740655DOI10.1006/jfan.1999.3508
  9. Fusco N., Lions P.L., Sbordone C., 10.1090/S0002-9939-96-03136-X, Proc. Amer. Math. Soc. 124 (1996), 561–565. Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
  10. Hajlasz P., Koskela P., Sobolev met Poincaré, Memoirs of the Amer. Math. Soc 145 (2000), 101pp. Zbl0954.46022MR1683160
  11. Hansson K., Imbeddings theorems of Sobolev type in potential theory, Math. Scand. 49 (1979), 77–102. MR0567435
  12. Hedberg L.I., 10.1090/S0002-9939-1972-0312232-4, Proc. Amer. Math. Soc. 36 (1972), 505–512. Zbl0283.26003MR0312232DOI10.1090/S0002-9939-1972-0312232-4
  13. Hempel J.A., Morris G.R., Trudinger N.S., 10.1017/S0004972700046074, Bull. Austral. Math. Soc. 3 (1970), 369–373. Zbl0205.12801MR0280998DOI10.1017/S0004972700046074
  14. Hencl S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 (2003), no. 1, 196–227. Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
  15. Hencl S., 10.1016/j.jmaa.2005.07.041, J. Math. Anal. Appl. 326 (2006), no. 1, 336–348. Zbl1115.46026MR2239242DOI10.1016/j.jmaa.2005.07.041
  16. Koskela P., Onninen J., 10.1016/S0022-247X(02)00465-1, J. Math. Anal. Appl. 278 (2003), 324–334. Zbl1019.26003MR1974010DOI10.1016/S0022-247X(02)00465-1
  17. Maz'ya V., Sobolev Spaces, Springer, Berlin, 1975. Zbl1152.46002MR0817985
  18. Maz'ya V., A theorem on multidimensional Schrödinger operator, (Russian), Izv. Akad. Nauk 28 (1964), 1145–1172. 
  19. Malý J., Pick L., 10.1090/S0002-9939-01-06060-9, Proc. Amer. Math. Soc. 130 (2002), no. 2, 555–563. MR1862137DOI10.1090/S0002-9939-01-06060-9
  20. O'Neil R., 10.1215/S0012-7094-63-03015-1, Duke Math. J. 30 (1963), 129–142. Zbl0178.47701MR0146673DOI10.1215/S0012-7094-63-03015-1
  21. Peetre J., 10.5802/aif.232, Ann. Inst. Fourier 16 (1966), 279–317. Zbl0151.17903MR0221282DOI10.5802/aif.232
  22. Pohozhaev S.I., On the imbedding Sobolev theorem for p l = n , Doklady Conference, Section Math. Moscow Power Inst. (1965), 158–170. 
  23. Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York, 1991. Zbl0724.46032MR1113700
  24. Strichartz R.S., 10.1512/iumj.1972.21.21066, Indiana Univ. Math. J. 21 (1972), 841–842. MR0293389DOI10.1512/iumj.1972.21.21066
  25. Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–484. Zbl0163.36402MR0216286
  26. Yudovič V.I., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Doklady 2 (1961), 746–749. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.