Complete convergence theorems for normed row sums from an array of rowwise pairwise negative quadrant dependent random variables with application to the dependent bootstrap

Andrew Rosalsky; Yongfeng Wu

Applications of Mathematics (2015)

  • Volume: 60, Issue: 3, page 251-263
  • ISSN: 0862-7940

Abstract

top
Let { X n , j , 1 j m ( n ) , n 1 } be an array of rowwise pairwise negative quadrant dependent mean 0 random variables and let 0 < b n . Conditions are given for j = 1 m ( n ) X n , j / b n 0 completely and for max 1 k m ( n ) | j = 1 k X n , j | / b n 0 completely. As an application of these results, we obtain a complete convergence theorem for the row sums j = 1 m ( n ) X n , j * of the dependent bootstrap samples { { X n , j * , 1 j m ( n ) } , n 1 } arising from a sequence of i.i.d. random variables { X n , n 1 } .

How to cite

top

Rosalsky, Andrew, and Wu, Yongfeng. "Complete convergence theorems for normed row sums from an array of rowwise pairwise negative quadrant dependent random variables with application to the dependent bootstrap." Applications of Mathematics 60.3 (2015): 251-263. <http://eudml.org/doc/270120>.

@article{Rosalsky2015,
abstract = {Let $\lbrace X_\{n,j\}, 1\le j\le m(n), n\ge 1\rbrace $ be an array of rowwise pairwise negative quadrant dependent mean 0 random variables and let $0<b_n\rightarrow \infty $. Conditions are given for $\sum \nolimits _\{j=1\}^\{m(n)\}X_\{n,j\}/b_n\rightarrow 0$ completely and for $\max \nolimits _\{1\le k\le m(n)\}\Bigl |\sum \nolimits _\{j=1\}^kX_\{n,j\}\Big |/b_n\rightarrow 0$ completely. As an application of these results, we obtain a complete convergence theorem for the row sums $\sum \nolimits _\{j=1\}^\{m(n)\}X_\{n,j\}^*$ of the dependent bootstrap samples $\lbrace \lbrace X_\{n,j\}^*, 1\le j\le m(n)\rbrace , n\ge 1\rbrace $ arising from a sequence of i.i.d. random variables $\lbrace X_n, n\ge 1\rbrace $.},
author = {Rosalsky, Andrew, Wu, Yongfeng},
journal = {Applications of Mathematics},
keywords = {array of rowwise pairwise negative quadrant dependent random variables; complete convergence; dependent bootstrap; sequence of i.i.d. random variables; array of rowwise pairwise negative quadrant dependent random variables; complete convergence; dependent bootstrap; sequence of i.i.d. random variables},
language = {eng},
number = {3},
pages = {251-263},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete convergence theorems for normed row sums from an array of rowwise pairwise negative quadrant dependent random variables with application to the dependent bootstrap},
url = {http://eudml.org/doc/270120},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Rosalsky, Andrew
AU - Wu, Yongfeng
TI - Complete convergence theorems for normed row sums from an array of rowwise pairwise negative quadrant dependent random variables with application to the dependent bootstrap
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 251
EP - 263
AB - Let $\lbrace X_{n,j}, 1\le j\le m(n), n\ge 1\rbrace $ be an array of rowwise pairwise negative quadrant dependent mean 0 random variables and let $0<b_n\rightarrow \infty $. Conditions are given for $\sum \nolimits _{j=1}^{m(n)}X_{n,j}/b_n\rightarrow 0$ completely and for $\max \nolimits _{1\le k\le m(n)}\Bigl |\sum \nolimits _{j=1}^kX_{n,j}\Big |/b_n\rightarrow 0$ completely. As an application of these results, we obtain a complete convergence theorem for the row sums $\sum \nolimits _{j=1}^{m(n)}X_{n,j}^*$ of the dependent bootstrap samples $\lbrace \lbrace X_{n,j}^*, 1\le j\le m(n)\rbrace , n\ge 1\rbrace $ arising from a sequence of i.i.d. random variables $\lbrace X_n, n\ge 1\rbrace $.
LA - eng
KW - array of rowwise pairwise negative quadrant dependent random variables; complete convergence; dependent bootstrap; sequence of i.i.d. random variables; array of rowwise pairwise negative quadrant dependent random variables; complete convergence; dependent bootstrap; sequence of i.i.d. random variables
UR - http://eudml.org/doc/270120
ER -

References

top
  1. Bozorgnia, A., Patterson, R. F., Taylor, R. L., 10.1155/S0161171293000729, Int. J. Math. Math. Sci. 16 (1993), 587-591. (1993) Zbl0844.60005MR1225505DOI10.1155/S0161171293000729
  2. Bozorgnia, A., Patterson, R. F., Taylor, R. L., Limit theorems for dependent random variables, V. Lakshmikantham World Congress of Nonlinear Analysts '92, Vol. I--IV Proc. of the First World Congress, Tampa, 1992. De Gruyter Berlin (1996), 1639-1650. (1996) Zbl0845.60010MR1389197
  3. Bozorgnia, A., Patterson, R. F., Taylor, R. L., 10.1080/07362999708809501, Stochastic Anal. Appl. 15 (1997), 651-669. (1997) Zbl0899.60028MR1478879DOI10.1080/07362999708809501
  4. Chung, K.-L., 10.2307/2371664, Am. J. Math. 69 (1947), 189-192. (1947) Zbl0034.07103MR0019853DOI10.2307/2371664
  5. Efron, B., 10.1214/aos/1176344552, Ann. Stat. 7 (1979), 1-26. (1979) Zbl0406.62024MR0515681DOI10.1214/aos/1176344552
  6. Erdős, P., 10.1214/aoms/1177730037, Ann. Math. Stat. 20 (1949), 286-291. (1949) Zbl0033.29001MR0030714DOI10.1214/aoms/1177730037
  7. Gan, S., Chen, P., Some limit theorems for sequences of pairwise NQD random variables, Acta Math. Sci., Ser. B, Engl. Ed. 28 (2008), 269-281. (2008) Zbl1174.60330MR2411834
  8. Hsu, P. L., Robbins, H., 10.1073/pnas.33.2.25, Proc. Natl. Acad. Sci. USA 33 (1947), 25-31. (1947) Zbl0030.20101MR0019852DOI10.1073/pnas.33.2.25
  9. Hu, T.-C., Móricz, F., Taylor, R. L., 10.1007/BF01950716, Acta Math. Hung. 54 (1989), 153-162. (1989) MR1015785DOI10.1007/BF01950716
  10. Hu, T.-C., Cabrera, M. Ordóñez, Volodin, A., 10.1080/07362990600869969, Stochastic Anal. Appl. 24 (2006), 939-952. (2006) MR2258910DOI10.1080/07362990600869969
  11. Hu, T.-C., Taylor, R. L., 10.1155/S0161171297000483, Int. J. Math. Math. Sci. 20 (1997), 375-382. (1997) Zbl0883.60024MR1444739DOI10.1155/S0161171297000483
  12. Lehmann, E. L., 10.1214/aoms/1177699260, Ann. Math. Stat. 37 (1966), 1137-1153. (1966) Zbl0146.40601MR0202228DOI10.1214/aoms/1177699260
  13. Li, D., Rosalsky, A., Volodin, A. I., On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math., Acad. Sin. (N.S.) 1 (2006), 281-305. (2006) Zbl1102.60026MR2230590
  14. Matuła, P., 10.1016/0167-7152(92)90191-7, Stat. Probab. Lett. 15 (1992), 209-213. (1992) Zbl0925.60024MR1190256DOI10.1016/0167-7152(92)90191-7
  15. Patterson, R. F., Smith, W. D., Taylor, R. L., Bozorgnia, A., 10.1016/S0362-546X(01)00265-6, Nonlinear Anal., Theory Methods Appl. 47 (2001), 1283-1295. (2001) Zbl1042.60503MR1970737DOI10.1016/S0362-546X(01)00265-6
  16. Patterson, R. F., Taylor, R. L., 10.1016/S0362-546X(97)00279-4, Nonlinear Anal., Theory Methods Appl. 30 (1997), 4229-4235. (1997) MR1603567DOI10.1016/S0362-546X(97)00279-4
  17. Pemantle, R., 10.1063/1.533200, J. Math. Phys. 41 (2000), 1371-1390. (2000) Zbl1052.62518MR1757964DOI10.1063/1.533200
  18. Smith, W. D., Taylor, R. L., Consistency of dependent bootstrap estimators, Am. J. Math. Manage. Sci. 21 (2001), 359-382. (2001) MR1896966
  19. Smith, W. D., Taylor, R. L., Dependent bootstrap confidence intervals, Selected Proceeding of the Symposium on Inference for Stochastic Processes, Athens, 2000 IMS Lecture Notes Monogr. Ser. 37 Inst. Math. Statist, Beachwood (2001), 91-107. (2001) MR2002505
  20. Taylor, R. L., Patterson, R. F., Bozorgnia, A., 10.1081/SAP-120004118, Stochastic Anal. Appl. 20 (2002), 643-656. (2002) Zbl1003.60032MR1900307DOI10.1081/SAP-120004118
  21. Volodin, A., Cabrera, M. Ordóñez, Hu, T. C., Convergence rate of the dependent bootstrapped means, Theory Probab. Appl. 50 (2006), 337-346 translation from Teor. Veroyatn. Primen. 50 (2005), 344-352 Russian. (2005) MR2221716
  22. Wu, Q., Convergence properties of pairwise NQD random sequences, Acta Math. Sin. 45 (2002), 617-624 Chinese. (2002) Zbl1008.60039MR1915127
  23. Wu, Y., Wang, D., 10.1007/s10492-012-0027-6, Appl. Math., Praha 57 (2012), 463-476. (2012) Zbl1265.60067MR2984614DOI10.1007/s10492-012-0027-6
  24. Wu, Y.-F., Zhu, D.-J., 10.1016/j.jkss.2009.05.003, J. Korean Stat. Soc. 39 (2010), 189-197. (2010) Zbl1294.60056MR2642485DOI10.1016/j.jkss.2009.05.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.