Variable Lebesgue norm estimates for BMO functions
Mitsuo Izuki; Yoshihiro Sawano
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 3, page 717-727
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topIzuki, Mitsuo, and Sawano, Yoshihiro. "Variable Lebesgue norm estimates for BMO functions." Czechoslovak Mathematical Journal 62.3 (2012): 717-727. <http://eudml.org/doc/246501>.
@article{Izuki2012,
abstract = {In this paper, we are going to characterize the space $\{\rm BMO\}(\{\mathbb \{R\}\}^n)$ through variable Lebesgue spaces and Morrey spaces. There have been many attempts to characterize the space $\{\rm BMO\}(\{\mathbb \{R\}\}^n)$ by using various function spaces. For example, Ho obtained a characterization of $\{\rm BMO\}(\{\mathbb \{R\}\}^n)$ with respect to rearrangement invariant spaces. However, variable Lebesgue spaces and Morrey spaces do not appear in the characterization. One of the reasons is that these spaces are not rearrangement invariant. We also obtain an analogue of the well-known John-Nirenberg inequality which can be seen as an extension to the variable Lebesgue spaces.},
author = {Izuki, Mitsuo, Sawano, Yoshihiro},
journal = {Czechoslovak Mathematical Journal},
keywords = {variable exponent; Morrey space; BMO; variable exponent; Morrey space; BMO},
language = {eng},
number = {3},
pages = {717-727},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variable Lebesgue norm estimates for BMO functions},
url = {http://eudml.org/doc/246501},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Izuki, Mitsuo
AU - Sawano, Yoshihiro
TI - Variable Lebesgue norm estimates for BMO functions
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 717
EP - 727
AB - In this paper, we are going to characterize the space ${\rm BMO}({\mathbb {R}}^n)$ through variable Lebesgue spaces and Morrey spaces. There have been many attempts to characterize the space ${\rm BMO}({\mathbb {R}}^n)$ by using various function spaces. For example, Ho obtained a characterization of ${\rm BMO}({\mathbb {R}}^n)$ with respect to rearrangement invariant spaces. However, variable Lebesgue spaces and Morrey spaces do not appear in the characterization. One of the reasons is that these spaces are not rearrangement invariant. We also obtain an analogue of the well-known John-Nirenberg inequality which can be seen as an extension to the variable Lebesgue spaces.
LA - eng
KW - variable exponent; Morrey space; BMO; variable exponent; Morrey space; BMO
UR - http://eudml.org/doc/246501
ER -
References
top- Cruz-Uribe, D., Diening, L., Fiorenza, A., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. (2009) Zbl1207.42011MR2493649
- Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., The maximal function on variable spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238 29 (2004), 247-249. (2004) MR2041952
- Diening, L., Maximal function on generalized Lebesgue spaces , Math. Inequal. Appl. 7 (2004), 245-253. (2004) MR2057643
- Diening, L., 10.1016/j.bulsci.2003.10.003, Bull. Sci. Math. 129 (2005), 657-700. (2005) MR2166733DOI10.1016/j.bulsci.2003.10.003
- Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T., Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math. 34 (2009), 503-522. (2009) MR2553809
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. {2017} Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
- Ho, K., 10.1016/j.exmath.2009.02.007, Expo. Math. 27 (2009), 363-372. (2009) Zbl1174.42025MR2567029DOI10.1016/j.exmath.2009.02.007
- Ho, K., 10.32917/hmj/1314204559, Hiroshima Math. J. 41 (2011), 153-165. (2011) Zbl1227.42024MR2849152DOI10.32917/hmj/1314204559
- Izuki, M., 10.1007/s12215-010-0015-1, Rend. Circ. Mat. Palermo 59 (2010), 199-213. (2010) Zbl1202.42029MR2670690DOI10.1007/s12215-010-0015-1
- John, F., Nirenberg, L., 10.1002/cpa.3160140317, Comm. Pure Appl. Math. 14 (1961), 415-426. (1961) Zbl0102.04302MR0131498DOI10.1002/cpa.3160140317
- Kováčik, O., Rákosník, J., On spaces and , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
- Lerner, A. K., 10.1090/S0002-9947-10-05066-X, Trans. Amer. Math. Soc. 362 (2010), 4229-4242. (2010) MR2608404DOI10.1090/S0002-9947-10-05066-X
- Luxenberg, W. A. J., Banach Function Spaces, Technische Hogeschool te Delft Assen (1955) 0072440.
- Nakano, H., Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd. Tokyo (1950) 0038565. Zbl0041.23401MR0038565
- Nakano, H., Topology of Linear Topological Spaces, Maruzen Co., Ltd. Tokyo (1951) 0046560. MR0046560
- Sawano, Y., Sugano, S., Tanaka, H., 10.1007/s11118-011-9239-8, Potential Anal. 36 (2012), 517-556. (2012) Zbl1242.42017MR2904632DOI10.1007/s11118-011-9239-8
- Sawano, Y., Sugano, S., Tanaka, H., Olsen's inequality and its applications to Schrödinger equations, RIMS Kôkyûroku Bessatsu B26 (2011), 51-80. (2011) Zbl1236.42018MR2883846
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.