Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 4, page 969-987
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLu, Yan, and Zhu, Yue Ping. "Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents." Czechoslovak Mathematical Journal 64.4 (2014): 969-987. <http://eudml.org/doc/269837>.
@article{Lu2014,
abstract = {We introduce a new type of variable exponent function spaces $M\dot\{K\}^\{\alpha (\cdot ),\lambda \}_\{q,p(\cdot )\}(\mathbb \{R\}^n)$ of Morrey-Herz type where the two main indices are variable exponents, and give some propositions of the introduced spaces. Under the assumption that the exponents $\alpha $ and $p$ are subject to the log-decay continuity both at the origin and at infinity, we prove the boundedness of a wide class of sublinear operators satisfying a proper size condition which include maximal, potential and Calderón-Zygmund operators and their commutators of BMO function on these Morrey-Herz type spaces by applying the properties of variable exponent and BMO norms.},
author = {Lu, Yan, Zhu, Yue Ping},
journal = {Czechoslovak Mathematical Journal},
keywords = {Morrey-Herz space; variable exponent; sublinear operator; commutator; Morrey-Herz space; variable exponent; sublinear operator; commutator},
language = {eng},
number = {4},
pages = {969-987},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents},
url = {http://eudml.org/doc/269837},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Lu, Yan
AU - Zhu, Yue Ping
TI - Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 969
EP - 987
AB - We introduce a new type of variable exponent function spaces $M\dot{K}^{\alpha (\cdot ),\lambda }_{q,p(\cdot )}(\mathbb {R}^n)$ of Morrey-Herz type where the two main indices are variable exponents, and give some propositions of the introduced spaces. Under the assumption that the exponents $\alpha $ and $p$ are subject to the log-decay continuity both at the origin and at infinity, we prove the boundedness of a wide class of sublinear operators satisfying a proper size condition which include maximal, potential and Calderón-Zygmund operators and their commutators of BMO function on these Morrey-Herz type spaces by applying the properties of variable exponent and BMO norms.
LA - eng
KW - Morrey-Herz space; variable exponent; sublinear operator; commutator; Morrey-Herz space; variable exponent; sublinear operator; commutator
UR - http://eudml.org/doc/269837
ER -
References
top- Almeida, A., Drihem, D., 10.1016/j.jmaa.2012.04.043, J. Math. Anal. Appl. 394 (2012), 781-795. (2012) Zbl1250.42077MR2927498DOI10.1016/j.jmaa.2012.04.043
- Cruz-Uribe, D., Diening, L., Fiorenza, A., A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. (2009) Zbl1207.42011MR2493649
- Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable spaces, Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
- Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., The maximal function on variable spaces, Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. (2003) MR1976842
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
- Herz, C., Lipschitz spaces and Berstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968), 283-323. (1968) MR0438109
- Ho, K.-P., The fractional integral operators on Morrey spaces with variable exponent on unbounded domains, Math. Inequal. Appl. 16 (2013), 363-373. (2013) Zbl1260.42009MR3059976
- Izuki, M., 10.1007/s12215-010-0015-1, Rend. Ciec. Mat. Palermo (2) 59 (2010), 199-213. (2010) Zbl1202.42029MR2670690DOI10.1007/s12215-010-0015-1
- Izuki, M., 10.1007/s10476-010-0102-8, Anal. Math. 36 (2010), 33-50. (2010) Zbl1224.42025MR2606575DOI10.1007/s10476-010-0102-8
- Izuki, M., 10.32917/hmj/1291818849, Hiroshima Math. J. 40 (2010), 343-355. (2010) Zbl1217.42034MR2766665DOI10.32917/hmj/1291818849
- Izuki, M., Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J. 13 (2009), 243-253. (2009) Zbl1193.42078MR2582455
- Izuki, M., Sawano, Y., 10.1007/s10587-012-0042-5, Czech. Math. J. 62 (2012), 717-727. (2012) Zbl1265.42087MR2984631DOI10.1007/s10587-012-0042-5
- Kováčik, O., Rákosník, J., On spaces and , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
- Lerner, A. K., 10.1090/S0002-9947-10-05066-X, Trans. Am. Math. Soc. 362 (2010), 4229-4242. (2010) MR2608404DOI10.1090/S0002-9947-10-05066-X
- Lu, S., Xu, L., 10.14492/hokmj/1285766224, Hokkaido Math. J. 34 (2005), 299-314. (2005) Zbl1081.42012MR2158999DOI10.14492/hokmj/1285766224
- Lu, S. Z., Yang, D. C., Hu, G., Herz Type Spaces and Their Applications, Science Press, Beijing (2008). (2008)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.