A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces
D. Cruz-Uribe; L. Diening; A. Fiorenza
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 1, page 151-173
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCruz-Uribe, D., Diening, L., and Fiorenza, A.. "A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 151-173. <http://eudml.org/doc/290576>.
@article{Cruz2009,
abstract = {We give a new proof using the classic Calderón-Zygmund decomposition that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space $L^\{p(\cdot)\}$ whenever the exponent function $p(\cdot)$ satisfies log-Hölder continuity conditions. We include the case where $p(\cdot)$ assumes the value infinity. The same proof also shows that the fractional maximal operator $M_\{a\}$, $0 < a < n$, maps $L^\{p(\cdot)\}$ into $L^\{q(\cdot)\}$, where $1/p(\cdot) - 1/q(\cdot) = a/n$.},
author = {Cruz-Uribe, D., Diening, L., Fiorenza, A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {151-173},
publisher = {Unione Matematica Italiana},
title = {A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces},
url = {http://eudml.org/doc/290576},
volume = {2},
year = {2009},
}
TY - JOUR
AU - Cruz-Uribe, D.
AU - Diening, L.
AU - Fiorenza, A.
TI - A New Proof of the Boundedness of Maximal Operators on Variable Lebesgue Spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 151
EP - 173
AB - We give a new proof using the classic Calderón-Zygmund decomposition that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space $L^{p(\cdot)}$ whenever the exponent function $p(\cdot)$ satisfies log-Hölder continuity conditions. We include the case where $p(\cdot)$ assumes the value infinity. The same proof also shows that the fractional maximal operator $M_{a}$, $0 < a < n$, maps $L^{p(\cdot)}$ into $L^{q(\cdot)}$, where $1/p(\cdot) - 1/q(\cdot) = a/n$.
LA - eng
UR - http://eudml.org/doc/290576
ER -
References
top- BENNETT, C. - SHARPLEY, R., Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc. (Boston, MA, 1988). Zbl0647.46057MR928802
- CAPONE, C. - CRUZ-URIBE, D. - FIORENZA, A., The fractional maximal operator and fractional integrals on variable spaces. Revista Math. Iberoamericana, 23, 3 (2007), 743-770. Zbl1213.42063MR2414490DOI10.4171/RMI/511
- CRUZ-URIBE, D., New proofs of two-weight norm inequalities for the maximal operator. Georgian Math. J., 7, 1 (2000), 33-42. Zbl0987.42019MR1768043
- CRUZ-URIBE, D. - FIORENZA, A. - NEUGEBAUER, C. J., The maximal function on variable spaces. Ann. Acad. Sci. Fenn. Math., 28, 1 (2003), 223-238. See errata [5]. Zbl1037.42023MR1976842
- CRUZ-URIBE, D. - FIORENZA, A. - NEUGEBAUER, C. J., Corrections to: "The maximal function on variable spaces" [Ann. Acad. Sci. Fenn. Math., 28, no. 1 (2003), 223- 238]. Ann. Acad. Sci. Fenn. Math., 29, 1 (2004), 247-249. Zbl1037.42023MR2041952
- DIENING, L., Maximal function on generalized Lebesgue spaces . Math. Inequal. Appl., 7, 2 (2004), 245-253. Zbl1071.42014MR2057643DOI10.7153/mia-07-27
- DIENING, L., Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math., 129, 8 (2005), 657-700. Zbl1096.46013MR2166733DOI10.1016/j.bulsci.2003.10.003
- DIENING, L., Habilitation, Universität Freiburg, 2007.
- DIENING, L. - HARJULEHTO, P. - HÄSTO, P. - MIZUTA, Y. - SHIMOMURA, T., Maximal functions in variable exponent spaces: limiting cases of the exponent. Preprint, 2007. MR2553809
- DIENING, L. - HÄSTO, P. - NEKVINDA, A., Open problems in variable exponent Lebesgue and Sobolev spaces. In FSDONA04 Proceedings ( Drabek and Rakosnik (eds.); Milovy, Czech Republic, pages 38-58. Academy of Sciences of the Czech Republic (Prague, 2005).
- DUOANDIKOETXEA, J., Fourier analysis, volume 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. MR1800316
- FAN, X. - ZHAO, D., On the spaces and . J. Math. Anal. Appl., 263, 2 (2001), 424-446. Zbl1028.46041MR1866056DOI10.1006/jmaa.2000.7617
- GARCÍA-CUERVA, J. - RUBIO DE FRANCIA, J. L., Weighted norm inequalities and related topics, volume 116 of North-Holland Mathematics Studies (North-Holland Publishing Co., Amsterdam, 1985). Zbl0578.46046MR807149
- KOKILASHVILI, V. - SAMKO, S., On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwendungen, 22, 4 (2003), 899-910. Zbl1040.42013MR2036935DOI10.4171/ZAA/1178
- KOVÁČIK, O. - RÁKOSNÍK, J., On spaces and . Czechoslovak Math. J., 41, 116 (4) (1991), 592-618. MR1134951
- LERNER, A. K., Some remarks on the Hardy-Littlewood maximal function on variable spaces. Math. Z., 251, 3 (2005), 509-521. Zbl1092.42009MR2190341DOI10.1007/s00209-005-0818-5
- MUCKENHOUPT, B. - WHEEDEN, R., Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc., 192 (1974), 261-274. Zbl0289.26010MR340523DOI10.2307/1996833
- MUSIELAK, J., Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1983). Zbl0557.46020MR724434DOI10.1007/BFb0072210
- NEKVINDA, A., Hardy-Littlewood maximal operator on . Math. Inequal. Appl., 7, 2 (2004), 255-265. Zbl1059.42016MR2057644DOI10.7153/mia-07-28
- NEKVINDA, A., A note on maximal operator on and . J. Funct. Spaces Appl., 5, 1 (2007), 49-88. Zbl1143.46011MR2296013DOI10.1155/2007/294367
- PICK, L. - RŮŽIČKA, M., An example of a space on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math., 19, 4 (2001), 369-371. Zbl1003.42013MR1876258DOI10.1016/S0723-0869(01)80023-2
- SAMKO, S., On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct., 16, 5-6 (2005), 461-482. Zbl1069.47056MR2138062DOI10.1080/10652460412331320322
Citations in EuDML Documents
top- Mitsuo Izuki, Yoshihiro Sawano, Variable Lebesgue norm estimates for BMO functions
- Yan Lu, Yue Ping Zhu, Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents
- Ka Luen Cheung, Kwok-Pun Ho, Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent
- Kristóf Szarvas, Ferenc Weisz, Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
- Alberto Fiorenza, Categories of results in variable Lebesgue spaces theory
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.