Existence of weak solutions to doubly degenerate diffusion equations
Applications of Mathematics (2012)
- Volume: 57, Issue: 1, page 43-69
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMatas, Aleš, and Merker, Jochen. "Existence of weak solutions to doubly degenerate diffusion equations." Applications of Mathematics 57.1 (2012): 43-69. <http://eudml.org/doc/246610>.
@article{Matas2012,
abstract = {We prove existence of weak solutions to doubly degenerate diffusion equations \begin\{equation*\} \dot\{u\} = \Delta \_p u^\{m-1\} + f \quad (m,p \ge 2) \end\{equation*\}
by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains $\Omega \subset \mathbb \{R\}^n$ with Dirichlet or Neumann boundary conditions. The function $f$ can be an inhomogeneity or a nonlinearity involving terms of the form $f(u)$ or $\operatorname\{div\}(F(u))$. In the appendix, an introduction to weak differentiability of functions with values in a Banach space appropriate for doubly nonlinear evolution equations is given.},
author = {Matas, Aleš, Merker, Jochen},
journal = {Applications of Mathematics},
keywords = {$p$-Laplacian; doubly nonlinear evolution equation; weak solution; -Laplacian; doubly nonlinear evolution equation; weak solution},
language = {eng},
number = {1},
pages = {43-69},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of weak solutions to doubly degenerate diffusion equations},
url = {http://eudml.org/doc/246610},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Matas, Aleš
AU - Merker, Jochen
TI - Existence of weak solutions to doubly degenerate diffusion equations
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 43
EP - 69
AB - We prove existence of weak solutions to doubly degenerate diffusion equations \begin{equation*} \dot{u} = \Delta _p u^{m-1} + f \quad (m,p \ge 2) \end{equation*}
by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains $\Omega \subset \mathbb {R}^n$ with Dirichlet or Neumann boundary conditions. The function $f$ can be an inhomogeneity or a nonlinearity involving terms of the form $f(u)$ or $\operatorname{div}(F(u))$. In the appendix, an introduction to weak differentiability of functions with values in a Banach space appropriate for doubly nonlinear evolution equations is given.
LA - eng
KW - $p$-Laplacian; doubly nonlinear evolution equation; weak solution; -Laplacian; doubly nonlinear evolution equation; weak solution
UR - http://eudml.org/doc/246610
ER -
References
top- Adams, R. A., Sobolev Spaces, Academic Press New Yorek-San Francisco-London (1975). (1975) Zbl0314.46030MR0450957
- Alt, H. W., Luckhaus, S., 10.1007/BF01176474, Math. Z. 183 (1983), 311-341. (1983) Zbl0497.35049MR0706391DOI10.1007/BF01176474
- Benilan, Ph., Equations d'évolution dans un espace de Banach quelconque et applications, PhD. Thèse Université de Paris XI Orsay (1972). (1972)
- DiBenedetto, E., Degenerate Parabolic Equations, Springer New York (1993). (1993) Zbl0794.35090MR1230384
- Bonforte, M., Grillo, G., Super and ultracontractive bounds for doubly nonlinear evolution equations, Rev. Math. Iberoam. 22 (2006), 111-129. (2006) Zbl1103.35021MR2268115
- Caisheng, Chen, 10.1006/jmaa.1999.6695, J. Math. Anal. Appl. 244 (2000), 133-146. (2000) MR1746793DOI10.1006/jmaa.1999.6695
- Cipriano, F., Grillo, G., 10.1006/jdeq.2000.3985, J. Differ. Equations 177 (2001), 209-234. (2001) Zbl1036.35043MR1867617DOI10.1006/jdeq.2000.3985
- Diaz, J. I., Padial, J. F., Uniqueness and existence of solutions in the space to a doubly nonlinear parabolic problem, Publ. Math. Barcelona 40 (1996), 527-560. (1996) MR1425634
- Igbida, N., Urbano, J. M., 10.1007/s00030-003-1030-0, NoDEA, Nonlinear Differ. Equ. Appl. 10 (2003), 287-307. (2003) Zbl1024.35054MR1994812DOI10.1007/s00030-003-1030-0
- Ivanov, A. V., 10.1007/BF02398459, J. Math. Sci. 83 (1997), 22-37. (1997) MR1328634DOI10.1007/BF02398459
- Maitre, E., 10.1155/S0161171203106175, IJMMS, Int. J. Math, Math. Sci. 27 (2003), 1725-1730. (2003) Zbl1032.46032MR1981027DOI10.1155/S0161171203106175
- Merker, J., Generalizations of logarithmic Sobolev inequalities, Discrete Contin. Dyn. Syst., Ser. S 1 (2008), 329-338. (2008) Zbl1152.35326MR2379911
- Simon, J., Compact sets in the space , Ann. Mat. Pura. Appl., IV. Ser. 146 (1987), 65-96. (1987) MR0916688
- Wu, Z., Zhao, J., Yin, J., Li, H., Nonlinear Evolution Equations, World Scientific Singapore (2001). (2001)
- Zheng, S., Nonlinear Evolution Equations, CRC-Press/Chapman & Hall Boca Raton (2004). (2004) Zbl1085.47058MR2088362
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.