Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications

Jian Qiu; Maxim Zabzine

Archivum Mathematicum (2011)

  • Volume: 047, Issue: 5, page 415-471
  • ISSN: 0044-8753

Abstract

top
These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible to both physicists and mathematicians.

How to cite

top

Qiu, Jian, and Zabzine, Maxim. "Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications." Archivum Mathematicum 047.5 (2011): 415-471. <http://eudml.org/doc/246633>.

@article{Qiu2011,
abstract = {These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible to both physicists and mathematicians.},
author = {Qiu, Jian, Zabzine, Maxim},
journal = {Archivum Mathematicum},
keywords = {Batalin-Vilkovisky formalism; graded symplectic geometry; graph homology; perturbation theory; Batalin-Vilkovisky formalism; graded symplectic geometry; graph homology; perturbation theory},
language = {eng},
number = {5},
pages = {415-471},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications},
url = {http://eudml.org/doc/246633},
volume = {047},
year = {2011},
}

TY - JOUR
AU - Qiu, Jian
AU - Zabzine, Maxim
TI - Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 5
SP - 415
EP - 471
AB - These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible to both physicists and mathematicians.
LA - eng
KW - Batalin-Vilkovisky formalism; graded symplectic geometry; graph homology; perturbation theory; Batalin-Vilkovisky formalism; graded symplectic geometry; graph homology; perturbation theory
UR - http://eudml.org/doc/246633
ER -

References

top
  1. Axelrod, S., Singer, I. M., Chern–Simons perturbation theory II, J. Differential Geom. 39 (1994), 173–213. (1994) Zbl0889.53053MR1258919
  2. Bar–Natan, D., 10.1016/0040-9383(95)93237-2, Topology 34 (1995), 423–472. (1995) MR1318886DOI10.1016/0040-9383(95)93237-2
  3. Batalin, I. A., Vilkovisky, G. A., 10.1016/0370-2693(81)90205-7, Phys. Lett. B 102 (1981), 27–31. (1981) MR0616572DOI10.1016/0370-2693(81)90205-7
  4. Batalin, I. A., Vilkovisky, G. A., 10.1103/PhysRevD.28.2567, Phys. Rev. D 28 (1983), 2567–2582, [Erratum-ibid. D 30 (1984) 508]. (1983) MR0726170DOI10.1103/PhysRevD.28.2567
  5. Carmeli, C., Caston, L., Fioresi, R., Mathematical foundation of supersymmetry, EMS Ser. Lect. Math., 2011, with an appendix I. Dimitrov. (2011) MR2840967
  6. Cattaneo, A. S., Felder, G., 10.1007/s002200000229, Comm. Math. Phys. 212 (2000), 591–611, [arXiv:math/9902090]. (2000) Zbl1038.53088MR1779159DOI10.1007/s002200000229
  7. Cattaneo, A. S., Fiorenza, D., Longoni, R., Graded Poisson Algebras, Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G. L., Tsou, S. T., eds.), vol. 2, Oxford, Elsevier, 2006, pp. 560–567. (2006) 
  8. Cattaneo, A. S., Mnëv, P., 10.1007/s00220-009-0959-1, Comm. Math. Phys. 293 (2010), 803–836, [arXiv:0811.2045 [math.QA]]. (2010) Zbl1246.58018MR2566163DOI10.1007/s00220-009-0959-1
  9. Conant, J., Vogtmann, K., 10.2140/agt.2003.3.1167, Algebr. Geom. Topol. 3 (2003), 1167–1224, [arXiv:math/0208169]. (2003) Zbl1063.18007MR2026331DOI10.2140/agt.2003.3.1167
  10. Deligne, P., Morgan, J. W., Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians, Amer. Math. Soc., Providence, RI 1, 2 (1999), 41–97, Vol. 1, 2 (Princeton, NJ, 1996/1997). (1999) MR1701597
  11. Getzler, E., 10.1007/BF02102639, Comm. Math. Phys. 159 (1994), 265–285. (1994) Zbl0807.17026MR1256989DOI10.1007/BF02102639
  12. Hamilton, A., A super–analogue of Kontsevich’s theorem on graph homology, [arXiv:math/0510390v1]. Zbl1173.17020
  13. Hamilton, A., Lazarev, A., 10.1016/j.geomphys.2009.01.007, J. Geom. Phys. 59 (2009), 555–575. (2009) Zbl1204.53070MR2518988DOI10.1016/j.geomphys.2009.01.007
  14. Hochschild, G., Serre, J–P., 10.2307/1969740, Ann. of Math. (2) 57 (3) (1953), 591–603. (1953) Zbl0053.01402MR0054581DOI10.2307/1969740
  15. Kontsevich, M., Formal (non)–commutative symplectic geometry, The Gelfand Mathematical Seminars, 1990 – 1992, Birkhäuser, 1993, pp. 173–187. (1993) Zbl0821.58018MR1247289
  16. Kontsevich, M., Feynman diagrams and low–dimensional topology, First European Congress of Mathematics, 1992, Paris, Progress in Mathematics 120, vol. II, Birkhäuser, 1994, pp. 97–121. (1994) Zbl0872.57001MR1341841
  17. Polyak, M., Feynman diagrams for pedestrians and mathematicians, Graphs and patterns in mathematics and theoretical physics, vol. 73, Proc. Sympos. Pure Math., 2005, [arXiv:math/0406251], pp. 15–42. (2005) Zbl1080.81047MR2131010
  18. Qiu, J., Zabzine, M., Knot invariants and new weight systems from general 3D TFTs, arXiv:1006.1240 [hep-th]. 
  19. Qiu, J., Zabzine, M., 10.1007/s00220-010-1102-z, Comm. Math. Phys. 300 (2010), 789–833, arXiv:0912.1243 [hep-th]. (2010) Zbl1214.81262MR2736963DOI10.1007/s00220-010-1102-z
  20. Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Quantization, Poisson brackets and beyond (Manchester, 2001), Contemp. Math., 2002, arXiv:math/0203110, pp. 169–185. (2002) Zbl1036.53057MR1958835
  21. Sawon, J., Rozansky–Witten invariants of hyperkähler manifolds, Ph.D. thesis, Oxford, 1999. (1999) Zbl0946.32014MR1708931
  22. Sawon, J., 10.2140/gtm.2006.8.145, Geom. Topol. Monogr. 8 (2006), 145–166, arXiv:math/0504495. (2006) Zbl1108.81034MR2402824DOI10.2140/gtm.2006.8.145
  23. Schwarz, A. S., 10.1007/BF02097392, Comm. Math. Phys. 155 (1993), 249–260, arXiv:hep-th/9205088. (1993) Zbl0786.58017MR1230027DOI10.1007/BF02097392
  24. Schwarz, A. S., 10.1023/A:1007684424728, Lett. Math. Phys. 49 (2) (1999), 115–122, arXiv:hep-th/9904168. (1999) Zbl1029.81064MR1728307DOI10.1023/A:1007684424728
  25. Varadarajan, V. S., Supersymmetry for mathematicians: an introduction, Courant Lecture Notes in Mathematics, 11 ed., AMS, New York, 2004. (2004) Zbl1142.58009MR2069561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.