Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications
Archivum Mathematicum (2011)
- Volume: 047, Issue: 5, page 415-471
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topQiu, Jian, and Zabzine, Maxim. "Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications." Archivum Mathematicum 047.5 (2011): 415-471. <http://eudml.org/doc/246633>.
@article{Qiu2011,
abstract = {These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible to both physicists and mathematicians.},
author = {Qiu, Jian, Zabzine, Maxim},
journal = {Archivum Mathematicum},
keywords = {Batalin-Vilkovisky formalism; graded symplectic geometry; graph homology; perturbation theory; Batalin-Vilkovisky formalism; graded symplectic geometry; graph homology; perturbation theory},
language = {eng},
number = {5},
pages = {415-471},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications},
url = {http://eudml.org/doc/246633},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Qiu, Jian
AU - Zabzine, Maxim
TI - Introduction to Graded Geometry, Batalin-Vilkovisky Formalism and their Applications
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 5
SP - 415
EP - 471
AB - These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present a proof of the isomorphism between the graph complex and the Chevalley-Eilenberg complex of formal Hamiltonian vectors fields. We briefly discuss how these ideas can be extended to the infinite dimensional setting. These notes should be accessible to both physicists and mathematicians.
LA - eng
KW - Batalin-Vilkovisky formalism; graded symplectic geometry; graph homology; perturbation theory; Batalin-Vilkovisky formalism; graded symplectic geometry; graph homology; perturbation theory
UR - http://eudml.org/doc/246633
ER -
References
top- Axelrod, S., Singer, I. M., Chern–Simons perturbation theory II, J. Differential Geom. 39 (1994), 173–213. (1994) Zbl0889.53053MR1258919
- Bar–Natan, D., 10.1016/0040-9383(95)93237-2, Topology 34 (1995), 423–472. (1995) MR1318886DOI10.1016/0040-9383(95)93237-2
- Batalin, I. A., Vilkovisky, G. A., 10.1016/0370-2693(81)90205-7, Phys. Lett. B 102 (1981), 27–31. (1981) MR0616572DOI10.1016/0370-2693(81)90205-7
- Batalin, I. A., Vilkovisky, G. A., 10.1103/PhysRevD.28.2567, Phys. Rev. D 28 (1983), 2567–2582, [Erratum-ibid. D 30 (1984) 508]. (1983) MR0726170DOI10.1103/PhysRevD.28.2567
- Carmeli, C., Caston, L., Fioresi, R., Mathematical foundation of supersymmetry, EMS Ser. Lect. Math., 2011, with an appendix I. Dimitrov. (2011) MR2840967
- Cattaneo, A. S., Felder, G., 10.1007/s002200000229, Comm. Math. Phys. 212 (2000), 591–611, [arXiv:math/9902090]. (2000) Zbl1038.53088MR1779159DOI10.1007/s002200000229
- Cattaneo, A. S., Fiorenza, D., Longoni, R., Graded Poisson Algebras, Encyclopedia of Mathematical Physics (Françoise, J.-P., Naber, G. L., Tsou, S. T., eds.), vol. 2, Oxford, Elsevier, 2006, pp. 560–567. (2006)
- Cattaneo, A. S., Mnëv, P., 10.1007/s00220-009-0959-1, Comm. Math. Phys. 293 (2010), 803–836, [arXiv:0811.2045 [math.QA]]. (2010) Zbl1246.58018MR2566163DOI10.1007/s00220-009-0959-1
- Conant, J., Vogtmann, K., 10.2140/agt.2003.3.1167, Algebr. Geom. Topol. 3 (2003), 1167–1224, [arXiv:math/0208169]. (2003) Zbl1063.18007MR2026331DOI10.2140/agt.2003.3.1167
- Deligne, P., Morgan, J. W., Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians, Amer. Math. Soc., Providence, RI 1, 2 (1999), 41–97, Vol. 1, 2 (Princeton, NJ, 1996/1997). (1999) MR1701597
- Getzler, E., 10.1007/BF02102639, Comm. Math. Phys. 159 (1994), 265–285. (1994) Zbl0807.17026MR1256989DOI10.1007/BF02102639
- Hamilton, A., A super–analogue of Kontsevich’s theorem on graph homology, [arXiv:math/0510390v1]. Zbl1173.17020
- Hamilton, A., Lazarev, A., 10.1016/j.geomphys.2009.01.007, J. Geom. Phys. 59 (2009), 555–575. (2009) Zbl1204.53070MR2518988DOI10.1016/j.geomphys.2009.01.007
- Hochschild, G., Serre, J–P., 10.2307/1969740, Ann. of Math. (2) 57 (3) (1953), 591–603. (1953) Zbl0053.01402MR0054581DOI10.2307/1969740
- Kontsevich, M., Formal (non)–commutative symplectic geometry, The Gelfand Mathematical Seminars, 1990 – 1992, Birkhäuser, 1993, pp. 173–187. (1993) Zbl0821.58018MR1247289
- Kontsevich, M., Feynman diagrams and low–dimensional topology, First European Congress of Mathematics, 1992, Paris, Progress in Mathematics 120, vol. II, Birkhäuser, 1994, pp. 97–121. (1994) Zbl0872.57001MR1341841
- Polyak, M., Feynman diagrams for pedestrians and mathematicians, Graphs and patterns in mathematics and theoretical physics, vol. 73, Proc. Sympos. Pure Math., 2005, [arXiv:math/0406251], pp. 15–42. (2005) Zbl1080.81047MR2131010
- Qiu, J., Zabzine, M., Knot invariants and new weight systems from general 3D TFTs, arXiv:1006.1240 [hep-th].
- Qiu, J., Zabzine, M., 10.1007/s00220-010-1102-z, Comm. Math. Phys. 300 (2010), 789–833, arXiv:0912.1243 [hep-th]. (2010) Zbl1214.81262MR2736963DOI10.1007/s00220-010-1102-z
- Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, Quantization, Poisson brackets and beyond (Manchester, 2001), Contemp. Math., 2002, arXiv:math/0203110, pp. 169–185. (2002) Zbl1036.53057MR1958835
- Sawon, J., Rozansky–Witten invariants of hyperkähler manifolds, Ph.D. thesis, Oxford, 1999. (1999) Zbl0946.32014MR1708931
- Sawon, J., 10.2140/gtm.2006.8.145, Geom. Topol. Monogr. 8 (2006), 145–166, arXiv:math/0504495. (2006) Zbl1108.81034MR2402824DOI10.2140/gtm.2006.8.145
- Schwarz, A. S., 10.1007/BF02097392, Comm. Math. Phys. 155 (1993), 249–260, arXiv:hep-th/9205088. (1993) Zbl0786.58017MR1230027DOI10.1007/BF02097392
- Schwarz, A. S., 10.1023/A:1007684424728, Lett. Math. Phys. 49 (2) (1999), 115–122, arXiv:hep-th/9904168. (1999) Zbl1029.81064MR1728307DOI10.1023/A:1007684424728
- Varadarajan, V. S., Supersymmetry for mathematicians: an introduction, Courant Lecture Notes in Mathematics, 11 ed., AMS, New York, 2004. (2004) Zbl1142.58009MR2069561
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.