Hom-Akivis algebras

A. Nourou Issa

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 4, page 485-500
  • ISSN: 0010-2628

Abstract

top
Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms and that the class of Hom-Akivis algebras is closed under self-morphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-Malcev algebra.

How to cite

top

Issa, A. Nourou. "Hom-Akivis algebras." Commentationes Mathematicae Universitatis Carolinae 52.4 (2011): 485-500. <http://eudml.org/doc/246680>.

@article{Issa2011,
abstract = {Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms and that the class of Hom-Akivis algebras is closed under self-morphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-Malcev algebra.},
author = {Issa, A. Nourou},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Akivis algebra; Hom-associative algebra; Hom-Lie algebra; Hom-Akivis algebra; Hom-Malcev algebra; Hom-Lie algebra; Akivis algebra; Hom-Akivis algebra; Maltsev algebra; Hom-Maltsev algebra},
language = {eng},
number = {4},
pages = {485-500},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Hom-Akivis algebras},
url = {http://eudml.org/doc/246680},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Issa, A. Nourou
TI - Hom-Akivis algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 4
SP - 485
EP - 500
AB - Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms and that the class of Hom-Akivis algebras is closed under self-morphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-Malcev algebra.
LA - eng
KW - Akivis algebra; Hom-associative algebra; Hom-Lie algebra; Hom-Akivis algebra; Hom-Malcev algebra; Hom-Lie algebra; Akivis algebra; Hom-Akivis algebra; Maltsev algebra; Hom-Maltsev algebra
UR - http://eudml.org/doc/246680
ER -

References

top
  1. Akivis M.A., Three-webs of multidimensional surfaces, Trudy Geom. Sem. 2 (1969), 7–31 (Russian). Zbl0701.53027MR0254760
  2. Akivis M.A., Local differentiable quasigroups and three-webs of multidimensional surfaces, in Studies in the Theory of Quasigroups and Loops, Izdat. “Shtiintsa”, Kishinev, 1973 (Russian), pp. 3–12. MR0370391
  3. Akivis M.A., 10.1007/BF00969285, Siberian Math. J. 17 (1976), no. 1, 3–8. Zbl0337.53018MR0405261DOI10.1007/BF00969285
  4. Akivis M.A., Goldberg V.V., Algebraic aspects of web geometry, Comment. Math. Univ. Carolin. 41 (2000), no. 2, 205–236. Zbl1042.53007MR1780866
  5. Ataguema H., Makhlouf A., Silvestrov S.D., 10.1063/1.3167801, J. Math. Phys. 50 (2009), no. 8, 083501. MR2554429DOI10.1063/1.3167801
  6. Fregier Y., Gohr A., On Hom-type algebras, arXiv:0903.3393v2 [math.RA] (2009). MR2795570
  7. Fregier Y., Gohr A., On unitality conditions for Hom-associative algebras, arXiv:0904.4874v2 [math.RA] (2009). 
  8. Gohr A., On Hom-algebras with surjective twisting, arXiv:0906.3270v3 [math.RA] (2009). MR2673746
  9. Hartwig J.T., Larsson D., Silvestrov S.D., 10.1016/j.jalgebra.2005.07.036, J. Algebra 295 (2006), 314–361. MR2194957DOI10.1016/j.jalgebra.2005.07.036
  10. Hofmann K.H., Strambach K., 10.2140/pjm.1986.123.301, Pacific J. Math. 123 (1986), no. 2, 301–327. Zbl0596.22002MR0840846DOI10.2140/pjm.1986.123.301
  11. Kuzmin E.N., Malcev algebras of dimension five over a field of zero characteristic, Algebra i Logika 9 (1970), 691–700. MR0283033
  12. Makhlouf A., Hom-alternative algebras and Hom-Jordan algebras, International Elect. J. Alg. 8 (2010), 177–190 (arXiv: 0909.0326v1 [math.RA] (2009)). MR2660549
  13. Makhlouf A., Paradigm of nonassociative Hom-algebras and Hom-superalgebras, Proceedings of Jordan Structures in Algebra and Analysis Meeting, eds. J. Carmona Tapia, A. Morales Campoy, A.M. Peralta Pereira, M.I. Ramirez Ivarez, Publishing House: Circulo RoJo (2010), pp. 145–177. MR2648355
  14. Makhlouf A., Silvestrov S.D., 10.4303/jglta/S070206, J. Gen. Lie Theory Appl. 2 (2008), 51–64. Zbl1184.17002MR2399415DOI10.4303/jglta/S070206
  15. Makhlouf A., Silvestrov S.D., 10.1142/S0219498810004117, J. Algebra Appl. 9 (2010), no. 4, 553–589 (arXiv: 0811.0400v2 [math.RA] (2008)). MR2718646DOI10.1142/S0219498810004117
  16. Maltsev A.I., Analytic loops, Mat. Sb. 36 (1955), 569–576. MR0069190
  17. Myung H.C., Malcev-Admissible Algebras, Progress in Mathematics, 64, Birkhäuser, Boston, MA, 1986. Zbl0871.17030MR0885089
  18. Sagle A.A., 10.1090/S0002-9947-1961-0143791-X, Trans. Amer. Math. Soc. 101 (1961), 426–458. Zbl0136.02103MR0143791DOI10.1090/S0002-9947-1961-0143791-X
  19. Yau D., 10.4303/jglta/S070209, J. Gen. Lie Theory Appl. 2 (2008), 95–108. Zbl1214.17001MR2399418DOI10.4303/jglta/S070209
  20. Yau D., Hom-algebras and homology, J. Lie Theory 19 (2009), 409–421 (arXiv:0712.3515v2 [math.RA] (2008)). MR2572137
  21. Yau D., Hom-Novikov algebras, J. Phys. A 44 (2011), 085202 (arXiv: 0909.0726v1 [math.RA] (2009)). Zbl1208.81110MR2770370
  22. Yau D., Hom-Maltsev, Hom-alternative, and Hom-Jordan algebras, submitted (arXiv: 1002.3944v1 [math.RA] (2010)). MR2660540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.