Page 1 Next

Displaying 1 – 20 of 61

Showing per page

A 2-category of chronological cobordisms and odd Khovanov homology

Krzysztof K. Putyra (2014)

Banach Center Publications

We create a framework for odd Khovanov homology in the spirit of Bar-Natan's construction for the ordinary Khovanov homology. Namely, we express the cube of resolutions of a link diagram as a diagram in a certain 2-category of chronological cobordisms and show that it is 2-commutative: the composition of 2-morphisms along any 3-dimensional subcube is trivial. This allows us to create a chain complex whose homotopy type modulo certain relations is a link invariant. Both the original and the odd Khovanov...

Algebraic aspects of web geometry

Maks A. Akivis, Vladislav V. Goldberg (2000)

Commentationes Mathematicae Universitatis Carolinae

Algebraic aspects of web geometry, namely its connections with the quasigroup and loop theory, the theory of local differential quasigroups and loops, and the theory of local algebras are discussed.

Hom-Akivis algebras

A. Nourou Issa (2011)

Commentationes Mathematicae Universitatis Carolinae

Hom-Akivis algebras are introduced. The commutator-Hom-associator algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is a Hom-Akivis algebra. It is shown that Hom-Akivis algebras can be obtained from Akivis algebras by twisting along algebra endomorphisms and that the class of Hom-Akivis algebras is closed under self-morphisms. It is pointed out that a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-Malcev algebra.

Linear identities in graph algebras

Agata Pilitowska (2009)

Commentationes Mathematicae Universitatis Carolinae

We find the basis of all linear identities which are true in the variety of entropic graph algebras. We apply it to describe the lattice of all subvarieties of power entropic graph algebras.

Malcev-Moduln.

Renate Carlsson (1976)

Journal für die reine und angewandte Mathematik

On bilinear biquandles

Sam Nelson, Jacquelyn L. Rische (2008)

Colloquium Mathematicae

We define a type of biquandle which is a generalization of symplectic quandles. We use the extra structure of these bilinear biquandles to define new knot and link invariants and give some examples.

Qualgebras and knotted 3-valent graphs

Victoria Lebed (2015)

Fundamenta Mathematicae

This paper is devoted to new algebraic structures, called qualgebras and squandles. Topologically, they emerge as an algebraic counterpart of knotted 3-valent graphs, just like quandles can be seen as an "algebraization" of knots. Algebraically, they are modeled after groups with conjugation and multiplication/squaring operations. We discuss basic properties of these structures, and introduce and study the notions of qualgebra/squandle 2-cocycles and 2-coboundaries. Knotted 3-valent graph invariants...

Currently displaying 1 – 20 of 61

Page 1 Next