On numerical solution of compressible flow in time-dependent domains

Miloslav Feistauer; Jaromír Horáček; Václav Kučera; Jaroslava Prokopová

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 1, page 1-16
  • ISSN: 0862-7959

Abstract

top
The paper deals with numerical simulation of a compressible flow in time-dependent 2D domains with a special interest in medical applications to airflow in the human vocal tract. The mathematical model of this process is described by the compressible Navier-Stokes equations. For the treatment of the time-dependent domain, the arbitrary Lagrangian-Eulerian (ALE) method is used. The discontinuous Galerkin finite element method (DGFEM) is used for the space semidiscretization of the governing equations in the ALE formulation. The time discretization is carried out with the aid of a linearized semi-implicit method with good stability properties. We present some computational results for the flow in a channel, representing a model of glottis and a part of the vocal tract, with a prescribed motion of the channel walls at the position of vocal folds.

How to cite

top

Feistauer, Miloslav, et al. "On numerical solution of compressible flow in time-dependent domains." Mathematica Bohemica 137.1 (2012): 1-16. <http://eudml.org/doc/246681>.

@article{Feistauer2012,
abstract = {The paper deals with numerical simulation of a compressible flow in time-dependent 2D domains with a special interest in medical applications to airflow in the human vocal tract. The mathematical model of this process is described by the compressible Navier-Stokes equations. For the treatment of the time-dependent domain, the arbitrary Lagrangian-Eulerian (ALE) method is used. The discontinuous Galerkin finite element method (DGFEM) is used for the space semidiscretization of the governing equations in the ALE formulation. The time discretization is carried out with the aid of a linearized semi-implicit method with good stability properties. We present some computational results for the flow in a channel, representing a model of glottis and a part of the vocal tract, with a prescribed motion of the channel walls at the position of vocal folds.},
author = {Feistauer, Miloslav, Horáček, Jaromír, Kučera, Václav, Prokopová, Jaroslava},
journal = {Mathematica Bohemica},
keywords = {compressible Navier-Stokes equations; arbitrary Lagrangian-Eulerian method; discontinuous Galerkin finite element method; interior and boundary penalty; semi-implicit time discretization; biomechanics of voice; compressible Navier-Stokes equations; interior and boundary penalty; semi-implicit time discretization; biomechanics of voice},
language = {eng},
number = {1},
pages = {1-16},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On numerical solution of compressible flow in time-dependent domains},
url = {http://eudml.org/doc/246681},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Feistauer, Miloslav
AU - Horáček, Jaromír
AU - Kučera, Václav
AU - Prokopová, Jaroslava
TI - On numerical solution of compressible flow in time-dependent domains
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 1
SP - 1
EP - 16
AB - The paper deals with numerical simulation of a compressible flow in time-dependent 2D domains with a special interest in medical applications to airflow in the human vocal tract. The mathematical model of this process is described by the compressible Navier-Stokes equations. For the treatment of the time-dependent domain, the arbitrary Lagrangian-Eulerian (ALE) method is used. The discontinuous Galerkin finite element method (DGFEM) is used for the space semidiscretization of the governing equations in the ALE formulation. The time discretization is carried out with the aid of a linearized semi-implicit method with good stability properties. We present some computational results for the flow in a channel, representing a model of glottis and a part of the vocal tract, with a prescribed motion of the channel walls at the position of vocal folds.
LA - eng
KW - compressible Navier-Stokes equations; arbitrary Lagrangian-Eulerian method; discontinuous Galerkin finite element method; interior and boundary penalty; semi-implicit time discretization; biomechanics of voice; compressible Navier-Stokes equations; interior and boundary penalty; semi-implicit time discretization; biomechanics of voice
UR - http://eudml.org/doc/246681
ER -

References

top
  1. Arnold, D. N., 10.1137/0719052, SIAM J. Numer. Anal. 19 (1982), 742-760. (1982) Zbl0482.65060MR0664882DOI10.1137/0719052
  2. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, D., Discontinuos Galerkin methods for elliptic problems, Discontinuous Galerkin methods. Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering 11 Cockburn, B., et al. Springer, Berlin (2000), 89-101. (2000) MR1842165
  3. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2001), 1749-1779. (2001) MR1885715DOI10.1137/S0036142901384162
  4. Bassi, F., Rebay, S., 10.1006/jcph.1997.5454, J. Comput. Phys. 138 (1997), 251-285. (1997) Zbl0902.76056MR1607481DOI10.1006/jcph.1997.5454
  5. Baumann, C. E., Oden, J. T., 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C, Int. J. Numer. Methods Fluids 31 (1999), 79-95. (1999) Zbl0985.76048MR1714511DOI10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
  6. Davis, T. A., Duff, I. S., 10.1145/305658.287640, ACM Transactions on Mathematical Software 25 (1999), 1-20. (1999) Zbl0962.65027MR1697461DOI10.1145/305658.287640
  7. Dolejší, V., Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows, Commun. Comput. Phys. 4 (2008), 231-274. (2008) MR2440946
  8. Dolejší, V., Feistauer, M., 10.1016/j.jcp.2004.01.023, J. Comput. Phys. 198 (2004), 727-746. (2004) Zbl1116.76386MR2062915DOI10.1016/j.jcp.2004.01.023
  9. Dolejší, V., Feistauer, M., 10.1081/NFA-200067298, Numer. Func. Anal. Optimiz. 26 (2005), 349-383. (2005) Zbl1078.65078MR2153838DOI10.1081/NFA-200067298
  10. Dolejší, V., Feistauer, M., Hozman, J., 10.1016/j.cma.2006.09.025, Comput. Methods Appl. Mech. Engrg. 196 (2007), 2813-2827. (2007) Zbl1121.76033MR2325393DOI10.1016/j.cma.2006.09.025
  11. Dolejší, V., Feistauer, M., Schwab, C., 10.1016/S0378-4754(02)00087-3, Math. Comput. Simul. 61 (2003), 333-346. (2003) Zbl1013.65108MR1984135DOI10.1016/S0378-4754(02)00087-3
  12. Feistauer, M., Dolejší, V., Kučera, V., 10.1007/s00791-006-0051-8, Comput. Vis. Sci. 10 (2007), 17-27. (2007) MR2295931DOI10.1007/s00791-006-0051-8
  13. Feistauer, M., Felcman, J., Straškaraba, I., Mathematical and Computational Methods for Compressible Flow, Clarendon Press, Oxford (2003). (2003) MR2261900
  14. Feistauer, M., Kučera, V., 10.1016/j.jcp.2007.01.035, J. Comput. Phys. 224 (2007), 208-221. (2007) Zbl1114.76042MR2322268DOI10.1016/j.jcp.2007.01.035
  15. Krivodonova, L., Berger, M., 10.1016/j.jcp.2005.05.029, J. Comput. Phys. 211 (2006), 492-512. (2006) Zbl1138.76403MR2173394DOI10.1016/j.jcp.2005.05.029
  16. Neustupa, J., 10.1002/mma.1059, Math. Meth. Appl. Sci. 32 (2009), 653-683. (2009) Zbl1160.35494MR2504002DOI10.1002/mma.1059
  17. Nomura, T., Hughes, T. J. R., 10.1016/0045-7825(92)90085-X, {Comput. Methods Appl. Mech. Engrg.} 95 (1992), 115-138. (1992) Zbl0756.76047DOI10.1016/0045-7825(92)90085-X
  18. Prokopová, J., Numerical solution of compressible flow, Master thesis, Charles University, Praha (2008). (2008) 
  19. Punčochářová, P., Fürst, J., Kozel, K., Horáček, J., Numerical solution of compressible flow with low Mach number through oscillating glottis, Proceedings of the 9th International Conference on Flow-Induced Vibration (FIV 2008), Praha, Institute of Thermomechanics AS CR (2008), 135-140. (2008) MR3615921
  20. Sváček, P., Feistauer, M., Horáček, J., 10.1016/j.jfluidstructs.2006.10.005, J. Fluids Structures 23 (2007), 391-411. (2007) DOI10.1016/j.jfluidstructs.2006.10.005
  21. Vegt, J. J. W. van der, Ven, H. van der, 10.1006/jcph.2002.7185, J. Comput. Phys. 182 (2002), 546-585. (2002) MR1941852DOI10.1006/jcph.2002.7185
  22. Vijayasundaram, G., 10.1016/0021-9991(86)90202-0, J. Comput. Phys. 63 (1986), 416-433. (1986) MR0835825DOI10.1016/0021-9991(86)90202-0
  23. Zolésio, J. P., Approximation for the wave equation in a moving domain, Proceedings of the conference Control of Partial Differential Equations. IFIP WG 7.2, Marcel Dekker, Lect. Notes Pure Appl. Math. 165, New York (1994), 271-279. (1994) Zbl0831.35095MR1299150

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.