On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains

Monika Balázsová; Miloslav Feistauer

Applications of Mathematics (2015)

  • Volume: 60, Issue: 5, page 501-526
  • ISSN: 0862-7940

Abstract

top
The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear convection-diffusion initial-boundary value problem in a time-dependent domain formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations of degree not greater than p with an integer p 1 . In the theoretical analysis, the piecewise linear time discretization is used. The main attention is paid to the investigation of unconditional stability of the method.

How to cite

top

Balázsová, Monika, and Feistauer, Miloslav. "On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains." Applications of Mathematics 60.5 (2015): 501-526. <http://eudml.org/doc/271601>.

@article{Balázsová2015,
abstract = {The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear convection-diffusion initial-boundary value problem in a time-dependent domain formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations of degree not greater than $p$ with an integer $p\ge 1$. In the theoretical analysis, the piecewise linear time discretization is used. The main attention is paid to the investigation of unconditional stability of the method.},
author = {Balázsová, Monika, Feistauer, Miloslav},
journal = {Applications of Mathematics},
keywords = {nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability; nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability},
language = {eng},
number = {5},
pages = {501-526},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains},
url = {http://eudml.org/doc/271601},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Balázsová, Monika
AU - Feistauer, Miloslav
TI - On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 5
SP - 501
EP - 526
AB - The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear convection-diffusion initial-boundary value problem in a time-dependent domain formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations of degree not greater than $p$ with an integer $p\ge 1$. In the theoretical analysis, the piecewise linear time discretization is used. The main attention is paid to the investigation of unconditional stability of the method.
LA - eng
KW - nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability; nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability
UR - http://eudml.org/doc/271601
ER -

References

top
  1. Akrivis, G., Makridakis, C., 10.1051/m2an:2004013, M2AN, Math. Model. Numer. Anal. 38 (2004), 261-289. (2004) Zbl1085.65094MR2069147DOI10.1051/m2an:2004013
  2. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
  3. Babuška, I., Baumann, C. E., Oden, J. T., 10.1016/S0898-1221(99)00117-0, Comput. Math. Appl. 37 (1999), 103-122. (1999) Zbl0940.65076MR1688050DOI10.1016/S0898-1221(99)00117-0
  4. Balázsová, M., Feistauer, M., Hadrava, M., Kosík, A., On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems, (to appear) in J. Numer. Math. 
  5. Bassi, F., Rebay, S., 10.1006/jcph.1996.5572, J. Comput. Phys. 131 (1997), 267-279. (1997) Zbl0871.76040MR1433934DOI10.1006/jcph.1996.5572
  6. Baumann, C. E., Oden, J. T., 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C, Int. J. Numer. Methods Fluids 31 (1999), 79-95. (1999) Zbl0985.76048MR1714511DOI10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
  7. Boffi, D., Gastaldi, L., Heltai, L., 10.1142/S0218202507002352, Math. Models Methods Appl. Sci. 17 (2007), 1479-1505. (2007) Zbl1186.76661MR2359913DOI10.1142/S0218202507002352
  8. Bonito, A., Kyza, I., Nochetto, R. H., 10.1137/120862715, SIAM J. Numer. Anal. 51 (2013), 577-604. (2013) Zbl1267.65114MR3033024DOI10.1137/120862715
  9. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A., 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y, Numer. Methods Partial Differ. Equations 16 (2000), 365-378. (2000) Zbl0957.65099MR1765651DOI10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
  10. Česenek, J., Feistauer, M., 10.1137/110828903, SIAM J. Numer. Anal. 50 (2012), 1181-1206. (2012) Zbl1312.65157MR2970739DOI10.1137/110828903
  11. Česenek, J., Feistauer, M., Horáček, J., Kučera, V., Prokopová, J., 10.1016/j.amc.2011.08.077, Appl. Math. Comput. 219 (2013), 7139-7150. (2013) MR3030556DOI10.1016/j.amc.2011.08.077
  12. Česenek, J., Feistauer, M., Kosík, A., 10.1002/zamm.201100184, ZAMM, Z. Angew. Math. Mech. 93 (2013), 387-402. (2013) Zbl1277.74026MR3069914DOI10.1002/zamm.201100184
  13. Chrysafinos, K., Walkington, N. J., 10.1137/030602289, SIAM J. Numer. Anal. 44 (2006), 349-366. (2006) Zbl1112.65086MR2217386DOI10.1137/030602289
  14. Cockburn, B., Shu, C.-W., 10.1023/A:1012873910884, J. Sci. Comput. 16 (2001), 173-261. (2001) Zbl1065.76135MR1873283DOI10.1023/A:1012873910884
  15. Dolejší, V., 10.1002/fld.730, Int. J. Numer. Methods Fluids 45 (2004), 1083-1106. (2004) Zbl1060.76570MR2072224DOI10.1002/fld.730
  16. Dolejší, V., Feistauer, M., Discontinuous Galerkin Method---Analysis and Applications to Compressible Flow, Springer, Heidelberg (2015). (2015) MR3363720
  17. Dolejší, V., Feistauer, M., Hozman, J., 10.1016/j.cma.2006.09.025, Comput. Methods Appl. Mech. Eng. 196 (2007), 2813-2827. (2007) Zbl1121.76033MR2325393DOI10.1016/j.cma.2006.09.025
  18. Donea, J., Giuliani, S., Halleux, J. P., 10.1016/0045-7825(82)90128-1, Comput. Methods Appl. Mech. Eng. 33 (1982), 689-723. (1982) Zbl0508.73063DOI10.1016/0045-7825(82)90128-1
  19. Eriksson, K., Estep, D., Hansbo, P., Johnson, C., Computational differential equations, Cambridge Univ. Press, Cambridge (1996). (1996) Zbl0946.65049MR1414897
  20. Eriksson, K., Johnson, C., 10.1137/0728003, SIAM J. Numer. Anal. 28 (1991), 43-77. (1991) Zbl0732.65093MR1083324DOI10.1137/0728003
  21. Estep, D., Larsson, S., 10.1051/m2an/1993270100351, RAIRO, Modélisation Math. Anal. Numér. 27 (1993), 35-54. (1993) Zbl0768.65065MR1204627DOI10.1051/m2an/1993270100351
  22. Feistauer, M., Felcman, J., Straškraba, I., Mathematical and Computational Methods for Compressible Flow, Numerical Mathematics and Scientific Computation Oxford University Press, Oxford (2003). (2003) Zbl1028.76001MR2261900
  23. Feistauer, M., Hájek, J., Švadlenka, K., 10.1007/s10492-007-0011-8, Appl. Math., Praha 52 (2007), 197-233. (2007) Zbl1164.65469MR2316153DOI10.1007/s10492-007-0011-8
  24. Feistauer, M., Hasnedlová-Prokopová, J., Horáček, J., Kosík, A., Kučera, V., 10.1016/j.cam.2013.03.028, J. Comput. Appl. Math. 254 (2013), 17-30. (2013) Zbl1290.65089MR3061063DOI10.1016/j.cam.2013.03.028
  25. Feistauer, M., Horáček, J., Kučera, V., Prokopová, J., 10.21136/MB.2012.142782, Math. Bohem. 137 (2012), 1-16. (2012) Zbl1249.65196MR2978442DOI10.21136/MB.2012.142782
  26. Feistauer, M., Kučera, V., Najzar, K., Prokopová, J., 10.1007/s00211-010-0348-x, Numer. Math. 117 (2011), 251-288. (2011) Zbl1211.65125MR2754851DOI10.1007/s00211-010-0348-x
  27. Feistauer, M., Kučera, V., Prokopová, J., 10.1016/j.matcom.2009.01.020, Math. Comput. Simul. 80 (2010), 1612-1623. (2010) MR2647255DOI10.1016/j.matcom.2009.01.020
  28. Formaggia, L., Nobile, F., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math. 7 (1999), 105-131. (1999) Zbl0942.65113MR1699243
  29. Gastaldi, L., A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math. 9 (2001), 123-156. (2001) Zbl0988.65082MR1836870
  30. Hasnedlová, J., Feistauer, M., Horáček, J., Kosík, A., Kučera, V., 10.1007/s00607-012-0240-x, Computing 95 (2013), S343--S361. (2013) MR3054377DOI10.1007/s00607-012-0240-x
  31. Havle, O., Dolejší, V., Feistauer, M., 10.1007/s10492-010-0012-x, Appl. Math., Praha 55 (2010), 353-372. (2010) Zbl1224.65219MR2737717DOI10.1007/s10492-010-0012-x
  32. Houston, P., Schwab, C., Süli, E., 10.1137/S0036142900374111, SIAM J. Numer. Anal. 39 (2002), 2133-2163. (2002) Zbl1015.65067MR1897953DOI10.1137/S0036142900374111
  33. Khadra, K., Angot, P., Parneix, S., Caltagirone, J.-P., 10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D, Int. J. Numer. Methods Fluids 34 (2000), 651-684. (2000) Zbl1032.76041DOI10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D
  34. Oden, J. T., Babuška, I., Baumann, C. E., 10.1006/jcph.1998.6032, J. Comput. Phys. 146 (1998), 491-519. (1998) Zbl0926.65109MR1654911DOI10.1006/jcph.1998.6032
  35. Schötzau, D., hp-DGFEM for Parabolic Evolution Problems. Applications to Diffusion and Viscous Incompressible Fluid Flow, PhD Thesis, ETH No. 13041, Zürich (1999). (1999) MR2715264
  36. Schötzau, D., Schwab, C., 10.1007/s100920070002, Calcolo 37 (2000), 207-232. (2000) MR1812787DOI10.1007/s100920070002
  37. Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics 25 Springer, Berlin (2006). (2006) Zbl1105.65102MR2249024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.