On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
Martin Balazovjech; Miloslav Feistauer
Applications of Mathematics (2015)
- Volume: 60, Issue: 5, page 501-526
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBalazovjech, Martin, and Feistauer, Miloslav. "On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains." Applications of Mathematics 60.5 (2015): 501-526. <http://eudml.org/doc/271601>.
@article{Balazovjech2015,
abstract = {The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear convection-diffusion initial-boundary value problem in a time-dependent domain formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations of degree not greater than $p$ with an integer $p\ge 1$. In the theoretical analysis, the piecewise linear time discretization is used. The main attention is paid to the investigation of unconditional stability of the method.},
author = {Balazovjech, Martin, Feistauer, Miloslav},
journal = {Applications of Mathematics},
keywords = {nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability; nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability},
language = {eng},
number = {5},
pages = {501-526},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains},
url = {http://eudml.org/doc/271601},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Balazovjech, Martin
AU - Feistauer, Miloslav
TI - On the stability of the ALE space-time discontinuous Galerkin method for nonlinear convection-diffusion problems in time-dependent domains
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 5
SP - 501
EP - 526
AB - The paper is concerned with the analysis of the space-time discontinuous Galerkin method (STDGM) applied to the numerical solution of the nonstationary nonlinear convection-diffusion initial-boundary value problem in a time-dependent domain formulated with the aid of the arbitrary Lagrangian-Eulerian (ALE) method. In the formulation of the numerical scheme we use the nonsymmetric, symmetric and incomplete versions of the space discretization of diffusion terms and interior and boundary penalty. The nonlinear convection terms are discretized with the aid of a numerical flux. The space discretization uses piecewise polynomial approximations of degree not greater than $p$ with an integer $p\ge 1$. In the theoretical analysis, the piecewise linear time discretization is used. The main attention is paid to the investigation of unconditional stability of the method.
LA - eng
KW - nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability; nonstationary nonlinear convection-diffusion equations; time-dependent domain; ALE method; space-time discontinuous Galerkin method; unconditional stability
UR - http://eudml.org/doc/271601
ER -
References
top- Akrivis, G., Makridakis, C., 10.1051/m2an:2004013, M2AN, Math. Model. Numer. Anal. 38 (2004), 261-289. (2004) Zbl1085.65094MR2069147DOI10.1051/m2an:2004013
- Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
- Babuška, I., Baumann, C. E., Oden, J. T., 10.1016/S0898-1221(99)00117-0, Comput. Math. Appl. 37 (1999), 103-122. (1999) Zbl0940.65076MR1688050DOI10.1016/S0898-1221(99)00117-0
- Balázsová, M., Feistauer, M., Hadrava, M., Kosík, A., On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems, (to appear) in J. Numer. Math.
- Bassi, F., Rebay, S., 10.1006/jcph.1996.5572, J. Comput. Phys. 131 (1997), 267-279. (1997) Zbl0871.76040MR1433934DOI10.1006/jcph.1996.5572
- Baumann, C. E., Oden, J. T., 10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C, Int. J. Numer. Methods Fluids 31 (1999), 79-95. (1999) Zbl0985.76048MR1714511DOI10.1002/(SICI)1097-0363(19990915)31:1<79::AID-FLD956>3.0.CO;2-C
- Boffi, D., Gastaldi, L., Heltai, L., 10.1142/S0218202507002352, Math. Models Methods Appl. Sci. 17 (2007), 1479-1505. (2007) Zbl1186.76661MR2359913DOI10.1142/S0218202507002352
- Bonito, A., Kyza, I., Nochetto, R. H., 10.1137/120862715, SIAM J. Numer. Anal. 51 (2013), 577-604. (2013) Zbl1267.65114MR3033024DOI10.1137/120862715
- Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A., 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y, Numer. Methods Partial Differ. Equations 16 (2000), 365-378. (2000) Zbl0957.65099MR1765651DOI10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
- Česenek, J., Feistauer, M., 10.1137/110828903, SIAM J. Numer. Anal. 50 (2012), 1181-1206. (2012) Zbl1312.65157MR2970739DOI10.1137/110828903
- Česenek, J., Feistauer, M., Horáček, J., Kučera, V., Prokopová, J., 10.1016/j.amc.2011.08.077, Appl. Math. Comput. 219 (2013), 7139-7150. (2013) MR3030556DOI10.1016/j.amc.2011.08.077
- Česenek, J., Feistauer, M., Kosík, A., 10.1002/zamm.201100184, ZAMM, Z. Angew. Math. Mech. 93 (2013), 387-402. (2013) Zbl1277.74026MR3069914DOI10.1002/zamm.201100184
- Chrysafinos, K., Walkington, N. J., 10.1137/030602289, SIAM J. Numer. Anal. 44 (2006), 349-366. (2006) Zbl1112.65086MR2217386DOI10.1137/030602289
- Cockburn, B., Shu, C.-W., 10.1023/A:1012873910884, J. Sci. Comput. 16 (2001), 173-261. (2001) Zbl1065.76135MR1873283DOI10.1023/A:1012873910884
- Dolejší, V., 10.1002/fld.730, Int. J. Numer. Methods Fluids 45 (2004), 1083-1106. (2004) Zbl1060.76570MR2072224DOI10.1002/fld.730
- Dolejší, V., Feistauer, M., Discontinuous Galerkin Method---Analysis and Applications to Compressible Flow, Springer, Heidelberg (2015). (2015) MR3363720
- Dolejší, V., Feistauer, M., Hozman, J., 10.1016/j.cma.2006.09.025, Comput. Methods Appl. Mech. Eng. 196 (2007), 2813-2827. (2007) Zbl1121.76033MR2325393DOI10.1016/j.cma.2006.09.025
- Donea, J., Giuliani, S., Halleux, J. P., 10.1016/0045-7825(82)90128-1, Comput. Methods Appl. Mech. Eng. 33 (1982), 689-723. (1982) Zbl0508.73063DOI10.1016/0045-7825(82)90128-1
- Eriksson, K., Estep, D., Hansbo, P., Johnson, C., Computational differential equations, Cambridge Univ. Press, Cambridge (1996). (1996) Zbl0946.65049MR1414897
- Eriksson, K., Johnson, C., 10.1137/0728003, SIAM J. Numer. Anal. 28 (1991), 43-77. (1991) Zbl0732.65093MR1083324DOI10.1137/0728003
- Estep, D., Larsson, S., 10.1051/m2an/1993270100351, RAIRO, Modélisation Math. Anal. Numér. 27 (1993), 35-54. (1993) Zbl0768.65065MR1204627DOI10.1051/m2an/1993270100351
- Feistauer, M., Felcman, J., Straškraba, I., Mathematical and Computational Methods for Compressible Flow, Numerical Mathematics and Scientific Computation Oxford University Press, Oxford (2003). (2003) Zbl1028.76001MR2261900
- Feistauer, M., Hájek, J., Švadlenka, K., 10.1007/s10492-007-0011-8, Appl. Math., Praha 52 (2007), 197-233. (2007) Zbl1164.65469MR2316153DOI10.1007/s10492-007-0011-8
- Feistauer, M., Hasnedlová-Prokopová, J., Horáček, J., Kosík, A., Kučera, V., 10.1016/j.cam.2013.03.028, J. Comput. Appl. Math. 254 (2013), 17-30. (2013) Zbl1290.65089MR3061063DOI10.1016/j.cam.2013.03.028
- Feistauer, M., Horáček, J., Kučera, V., Prokopová, J., On numerical solution of compressible flow in time-dependent domains, Math. Bohem. 137 (2012), 1-16. (2012) Zbl1249.65196MR2978442
- Feistauer, M., Kučera, V., Najzar, K., Prokopová, J., 10.1007/s00211-010-0348-x, Numer. Math. 117 (2011), 251-288. (2011) Zbl1211.65125MR2754851DOI10.1007/s00211-010-0348-x
- Feistauer, M., Kučera, V., Prokopová, J., 10.1016/j.matcom.2009.01.020, Math. Comput. Simul. 80 (2010), 1612-1623. (2010) MR2647255DOI10.1016/j.matcom.2009.01.020
- Formaggia, L., Nobile, F., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math. 7 (1999), 105-131. (1999) Zbl0942.65113MR1699243
- Gastaldi, L., A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math. 9 (2001), 123-156. (2001) Zbl0988.65082MR1836870
- Hasnedlová, J., Feistauer, M., Horáček, J., Kosík, A., Kučera, V., 10.1007/s00607-012-0240-x, Computing 95 (2013), S343--S361. (2013) MR3054377DOI10.1007/s00607-012-0240-x
- Havle, O., Dolejší, V., Feistauer, M., 10.1007/s10492-010-0012-x, Appl. Math., Praha 55 (2010), 353-372. (2010) Zbl1224.65219MR2737717DOI10.1007/s10492-010-0012-x
- Houston, P., Schwab, C., Süli, E., 10.1137/S0036142900374111, SIAM J. Numer. Anal. 39 (2002), 2133-2163. (2002) Zbl1015.65067MR1897953DOI10.1137/S0036142900374111
- Khadra, K., Angot, P., Parneix, S., Caltagirone, J.-P., 10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D, Int. J. Numer. Methods Fluids 34 (2000), 651-684. (2000) Zbl1032.76041DOI10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D
- Oden, J. T., Babuška, I., Baumann, C. E., 10.1006/jcph.1998.6032, J. Comput. Phys. 146 (1998), 491-519. (1998) Zbl0926.65109MR1654911DOI10.1006/jcph.1998.6032
- Schötzau, D., hp-DGFEM for Parabolic Evolution Problems. Applications to Diffusion and Viscous Incompressible Fluid Flow, PhD Thesis, ETH No. 13041, Zürich (1999). (1999) MR2715264
- Schötzau, D., Schwab, C., 10.1007/s100920070002, Calcolo 37 (2000), 207-232. (2000) MR1812787DOI10.1007/s100920070002
- Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics 25 Springer, Berlin (2006). (2006) Zbl1105.65102MR2249024
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.