The Kadison problem on a class of commutative Banach algebras with closed cone
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 4, page 631-637
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topToumi, M. A.. "The Kadison problem on a class of commutative Banach algebras with closed cone." Commentationes Mathematicae Universitatis Carolinae 51.4 (2010): 631-637. <http://eudml.org/doc/246714>.
@article{Toumi2010,
abstract = {The main result of the paper characterizes continuous local derivations on a class of commutative Banach algebra $A$ that all of its squares are positive and satisfying the following property: Every continuous bilinear map $\Phi $ from $A\times A$ into an arbitrary Banach space $B$ such that $\Phi (a,b)=0$ whenever $ab=0$, satisfies the condition $\Phi (ab,c)=\Phi (a,bc)$ for all $a,b,c\in A$.},
author = {Toumi, M. A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {derivation; local derivation; derivation; local derivation; Banach algebra},
language = {eng},
number = {4},
pages = {631-637},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The Kadison problem on a class of commutative Banach algebras with closed cone},
url = {http://eudml.org/doc/246714},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Toumi, M. A.
TI - The Kadison problem on a class of commutative Banach algebras with closed cone
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 4
SP - 631
EP - 637
AB - The main result of the paper characterizes continuous local derivations on a class of commutative Banach algebra $A$ that all of its squares are positive and satisfying the following property: Every continuous bilinear map $\Phi $ from $A\times A$ into an arbitrary Banach space $B$ such that $\Phi (a,b)=0$ whenever $ab=0$, satisfies the condition $\Phi (ab,c)=\Phi (a,bc)$ for all $a,b,c\in A$.
LA - eng
KW - derivation; local derivation; derivation; local derivation; Banach algebra
UR - http://eudml.org/doc/246714
ER -
References
top- Alaminos J., Brešar M., Cerne M., Extremera J., Villena A.R., 10.1016/j.jmaa.2008.06.037, J. Math. Anal. Appl. 347 (2008), 472–481. MR2440343DOI10.1016/j.jmaa.2008.06.037
- Alaminos J., Brešar M., Extremera J., Villena A.R., 10.4064/sm193-2-3, Studia Math. 193 (2009), 131–159. MR2515516DOI10.4064/sm193-2-3
- Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, Orlando, 1985. Zbl1098.47001MR0809372
- Buskes G., van Rooij A., 10.1023/A:1009826510957, Positivity 4 (2000), 227–331. Zbl0987.46002MR1797125DOI10.1023/A:1009826510957
- Diem J.E., 10.2140/pjm.1968.25.71, Pacific J. Math. 25 (1968), 71–82. Zbl0157.08004MR0227068DOI10.2140/pjm.1968.25.71
- Kadison R.V., 10.1016/0021-8693(90)90095-6, J. Algebra 130 (1990), 494–509. Zbl0751.46041MR1051316DOI10.1016/0021-8693(90)90095-6
- Luxemburg W.A.J., Zaanen A.C., Riesz Spaces I, North-Holland, Amsterdam, 1971.
- De Pagter B., f-algebras and orthomorphisms, Thesis, Leiden, 1981.
- Schaefer H.H., Banach lattices and positive operators, Springer, New York, 1974. Zbl0296.47023MR0423039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.