Non linear systems of the type of the stationary Navier-Stokes system.
Journal für die reine und angewandte Mathematik (1982)
- Volume: 330, page 173-214
- ISSN: 0075-4102; 1435-5345/e
Access Full Article
topHow to cite
topGiaquinta, M., and Modica, G.. "Non linear systems of the type of the stationary Navier-Stokes system.." Journal für die reine und angewandte Mathematik 330 (1982): 173-214. <http://eudml.org/doc/152411>.
@article{Giaquinta1982,
author = {Giaquinta, M., Modica, G.},
journal = {Journal für die reine und angewandte Mathematik},
keywords = {Legendre-Hadamard condition; stationary Navier-Stokes systems; regularity up to the boundary; Neumann problem},
pages = {173-214},
title = {Non linear systems of the type of the stationary Navier-Stokes system.},
url = {http://eudml.org/doc/152411},
volume = {330},
year = {1982},
}
TY - JOUR
AU - Giaquinta, M.
AU - Modica, G.
TI - Non linear systems of the type of the stationary Navier-Stokes system.
JO - Journal für die reine und angewandte Mathematik
PY - 1982
VL - 330
SP - 173
EP - 214
KW - Legendre-Hadamard condition; stationary Navier-Stokes systems; regularity up to the boundary; Neumann problem
UR - http://eudml.org/doc/152411
ER -
Citations in EuDML Documents
top- Michael Bildhauer, Martin Fuchs, On the exterior problem in 2D for stationary flows of fluids with shear dependent viscosity
- Martin Fuchs, On minimizers with prescribed divergence
- Thierry Astruc, Existence of regular solutions for a one-dimensional simplified perfect-plastic problem
- Jens Frehse, Michael Růžička, On the regularity of the stationary Navier-Stokes equations
- J. Naumann, On a maximum principle for weak solutions of the stationary Stokes system
- Václav Mácha, On a generalized Stokes problem
- Wenge Hao, Salvatore Leonardi, Mark Steinhauer, Examples of discontinuous, divergence-free solutions to elliptic variational problems
- Alberto Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method
- Paolo Maremonti, Remigio Russo, On the maximum modulus theorem for the Stokes system
- Hiroshi Kawabi, On a construction of weak solutions to non-stationary Stokes type equations by minimizing variational functionals and their regularity
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.