Displaying similar documents to “The symplectic Gram-Schmidt theorem and fundamental geometries for 𝒜 -modules”

Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds

Svatopluk Krýsl (2007)

Archivum Mathematicum

Similarity:

Consider a flat symplectic manifold ( M 2 l , ω ) , l 2 , admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If λ is an eigenvalue of the symplectic Dirac operator such that - ı l λ is not a symplectic Killing number, then l - 1 l λ is an eigenvalue of the symplectic Rarita-Schwinger operator.

𝒞 0 -rigidity of characteristics in symplectic geometry

Emmanuel Opshtein (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

The paper concerns a 𝒞 0 -rigidity result for the characteristic foliations in symplectic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a smooth hypersurface also preserves its characteristic foliation.

Projective structure, SL ˜ ( 3 , ) and the symplectic Dirac operator

Marie Holíková, Libor Křižka, Petr Somberg (2016)

Archivum Mathematicum

Similarity:

Inspired by the results on symmetries of the symplectic Dirac operator, we realize symplectic spinor fields and the symplectic Dirac operator in the framework of (the double cover of) homogeneous projective structure in two real dimensions. The symmetry group of the homogeneous model of the double cover of projective geometry in two real dimensions is ˜ ( 3 , ) .