Monadic -valued Łukasiewicz-Moisil algebras
A. V. Figallo; Claudia A. Sanza
Mathematica Bohemica (2012)
- Volume: 137, Issue: 4, page 425-447
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFigallo, A. V., and Sanza, Claudia A.. "Monadic $n\times m$-valued Łukasiewicz-Moisil algebras." Mathematica Bohemica 137.4 (2012): 425-447. <http://eudml.org/doc/246958>.
@article{Figallo2012,
abstract = {Here we initiate an investigation into the class $mLM_\{n\times m\}$ of monadic $n\times m$-valued Łukasiewicz-Moisil algebras (or $mLM_\{n \times m\}$-algebras), namely $n\times m$-valued Łukasiewicz-Moisil algebras endowed with a unary operation. These algebras constitute a generalization of monadic $n$-valued Łukasiewicz-Moisil algebras. In this article, the congruences on these algebras are determined and subdirectly irreducible algebras are characterized. From this last result it is proved that $mLM_\{n\times m\}$ is a discriminator variety and as a consequence, the principal congruences are characterized. Furthermore, the number of congruences of finite $mLM_\{n \times m\}$-algebras is computed. In addition, a topological duality for $mLM_\{n \times m\}$-algebras is described and a characterization of $mLM_\{n \times m\}$-congruences in terms of special subsets of the associated space is shown. Moreover, the subsets which correspond to principal congruences are determined. Finally, some functional representation theorems for these algebras are given and the relationship between them is pointed out.},
author = {Figallo, A. V., Sanza, Claudia A.},
journal = {Mathematica Bohemica},
keywords = {$n$-valued Łukasiewicz-Moisil algebra; monadic $n$-valued Łukasiewicz-Moisil algebra; congruence; subdirectly irreducible algebra; discriminator variety; Priestley space; -valued Łukasiewicz-Moisil algebras; monadic -valued Łukasiewicz-Moisil algebras},
language = {eng},
number = {4},
pages = {425-447},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Monadic $n\times m$-valued Łukasiewicz-Moisil algebras},
url = {http://eudml.org/doc/246958},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Figallo, A. V.
AU - Sanza, Claudia A.
TI - Monadic $n\times m$-valued Łukasiewicz-Moisil algebras
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 4
SP - 425
EP - 447
AB - Here we initiate an investigation into the class $mLM_{n\times m}$ of monadic $n\times m$-valued Łukasiewicz-Moisil algebras (or $mLM_{n \times m}$-algebras), namely $n\times m$-valued Łukasiewicz-Moisil algebras endowed with a unary operation. These algebras constitute a generalization of monadic $n$-valued Łukasiewicz-Moisil algebras. In this article, the congruences on these algebras are determined and subdirectly irreducible algebras are characterized. From this last result it is proved that $mLM_{n\times m}$ is a discriminator variety and as a consequence, the principal congruences are characterized. Furthermore, the number of congruences of finite $mLM_{n \times m}$-algebras is computed. In addition, a topological duality for $mLM_{n \times m}$-algebras is described and a characterization of $mLM_{n \times m}$-congruences in terms of special subsets of the associated space is shown. Moreover, the subsets which correspond to principal congruences are determined. Finally, some functional representation theorems for these algebras are given and the relationship between them is pointed out.
LA - eng
KW - $n$-valued Łukasiewicz-Moisil algebra; monadic $n$-valued Łukasiewicz-Moisil algebra; congruence; subdirectly irreducible algebra; discriminator variety; Priestley space; -valued Łukasiewicz-Moisil algebras; monadic -valued Łukasiewicz-Moisil algebras
UR - http://eudml.org/doc/246958
ER -
References
top- Balbes, R., Dwinger, Ph., Distributive Lattices, Univ. of Missouri Press, Columbia (1974). (1974) Zbl0321.06012MR0373985
- Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S., Łukasiewicz-Moisil Algebras, North-Holland, Amsterdam (1991). (1991) Zbl0726.06007MR1112790
- Burris, S., Sankappanavar, H. P., 10.1007/978-1-4613-8130-3_3, Springer, Berlin (1981). (1981) MR0648287DOI10.1007/978-1-4613-8130-3_3
- Cignoli, R., Moisil Algebras, Notas de Lógica Matemática 27, Inst. Mat. Univ. Nacional del Sur, Bahía Blanca (1970). (1970) MR0345884
- Cignoli, R., 10.1016/0012-365X(91)90312-P, Discrete Math. 96 (1991), 183-197. (1991) Zbl0753.06012MR1139446DOI10.1016/0012-365X(91)90312-P
- Cornish, W., Fowler, P., 10.1017/S0004972700022966, Bull. Aust. Math. Soc. 16 (1977), 1-13. (1977) Zbl0329.06005MR0434907DOI10.1017/S0004972700022966
- Figallo, A. V., Sanza, C., Advances in monadic -valued Łukasiewicz algebras with negation, Abstracts of Lectures, Tutorials and Talks. International Conference on Order, Algebra and Logics. Vanderbilt University, Nashville, USA (2007), 46. (2007) MR2207304
- Figallo, A. V., Sanza, C., The -propositional calculus, Bull. Sect. Log. 35 (2008), 67-79. (2008) MR2460596
- Figallo, A. V., Sanza, C., Ziliani, A., Functional monadic -valued Łukasiewicz algebras, Math. Bohem. 130 (2005), 337-348. (2005) Zbl1112.06010MR2182380
- Georgescu, G., Vraciu, C., Algebre Boole monadice si algebre Łukasiewicz monadice, Studii Cerc. Mat. 23 (1971), 1025-1048. (1971)
- Halmos, P., Algebraic Logic I. Monadic Boolean algebras, Compositio Math. 12 (1955), 217-249. (1955) MR0078304
- Halmos, P., Algebraic Logic, Chelsea, New York (1962). (1962) Zbl0101.01101MR0131961
- Halmos, P., Lectures on Boolean Algebras, Van Nostrand, Princeton (1963). (1963) Zbl0114.01603MR0167440
- Moisil, Gr. C., Essais sur les logiques non Chrysippiennes, Bucarest (1972). (1972) Zbl0241.02006MR0398774
- Monteiro, A., Varsavsky, O., Algebras de Heyting monádicas, Actas de las X Jornadas de la Unión Matemática Argentina, Bahía Blanca (1957), 52-62. (1957)
- Monteiro, L., Algebras de Lukasiewicz trivalentes monádicas, Notas de Lógica Matemática 32, Inst. Mat. Univ. Nacional del Sur, Bahía Blanca Spanish (1974). (1974) Zbl0298.02063MR0379184
- Priestley, H., 10.1112/blms/2.2.186, Bull. Lond. Math. Soc. 2 (1970), 186-190. (1970) Zbl0201.01802MR0265242DOI10.1112/blms/2.2.186
- Priestley, H., 10.1112/plms/s3-24.3.507, Proc. Lond. Math. Soc., III. Ser. 24 (1972), 507-530. (1972) Zbl0323.06011MR0300949DOI10.1112/plms/s3-24.3.507
- Priestley, H., Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 39-60. (1984) Zbl0557.06007MR0779844
- Sanza, C., Algebras de Łukasiewicz matriciales -valuadas con negación monádicas, Noticiero de la Unión Matemática, Argentina (2002), 165. (2002)
- Sanza, C., 10.1093/jigpal/12.6.499, Log. J. IGPL 12 (2004), 499-507. (2004) Zbl1062.06018MR2117684DOI10.1093/jigpal/12.6.499
- Sanza, C., Algebras de Łukasiewicz -valuadas con negación, Ph. D. Thesis, Univ. Nacional del Sur, Bahía Blanca, Argentina (2005). (2005)
- Sanza, C., On monadic -valued Łukasiewicz algebras with negation, Algebraic and Topological Methods in Non-Classical Logics II. Abstracts, Barcelona, España (2005), 71. (2005) MR2207304
- Sanza, C., -valued Łukasiewicz algebras with negation, Rep. Math. Logic 40 (2006), 83-106. (2006) Zbl1096.03076MR2207304
- Sanza, C., 10.2478/s11533-008-0035-7, Cent. Eur. J. Math. 6 (2008), 372-383. (2008) Zbl1155.06009MR2424999DOI10.2478/s11533-008-0035-7
- Suchoń, W., Matrix Łukasiewicz algebras, Rep. Math. Logic 4 (1975), 91-104. (1975) Zbl0348.02021
- Werner, H., Discriminator-Algebras, Algebraic Representation and Model Theoretic Properties, Akademie, Berlin (1978). (1978) Zbl0374.08002MR0526402
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.