Monadic n × m -valued Łukasiewicz-Moisil algebras

A. V. Figallo; Claudia A. Sanza

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 4, page 425-447
  • ISSN: 0862-7959

Abstract

top
Here we initiate an investigation into the class m L M n × m of monadic n × m -valued Łukasiewicz-Moisil algebras (or m L M n × m -algebras), namely n × m -valued Łukasiewicz-Moisil algebras endowed with a unary operation. These algebras constitute a generalization of monadic n -valued Łukasiewicz-Moisil algebras. In this article, the congruences on these algebras are determined and subdirectly irreducible algebras are characterized. From this last result it is proved that m L M n × m is a discriminator variety and as a consequence, the principal congruences are characterized. Furthermore, the number of congruences of finite m L M n × m -algebras is computed. In addition, a topological duality for m L M n × m -algebras is described and a characterization of m L M n × m -congruences in terms of special subsets of the associated space is shown. Moreover, the subsets which correspond to principal congruences are determined. Finally, some functional representation theorems for these algebras are given and the relationship between them is pointed out.

How to cite

top

Figallo, A. V., and Sanza, Claudia A.. "Monadic $n\times m$-valued Łukasiewicz-Moisil algebras." Mathematica Bohemica 137.4 (2012): 425-447. <http://eudml.org/doc/246958>.

@article{Figallo2012,
abstract = {Here we initiate an investigation into the class $mLM_\{n\times m\}$ of monadic $n\times m$-valued Łukasiewicz-Moisil algebras (or $mLM_\{n \times m\}$-algebras), namely $n\times m$-valued Łukasiewicz-Moisil algebras endowed with a unary operation. These algebras constitute a generalization of monadic $n$-valued Łukasiewicz-Moisil algebras. In this article, the congruences on these algebras are determined and subdirectly irreducible algebras are characterized. From this last result it is proved that $mLM_\{n\times m\}$ is a discriminator variety and as a consequence, the principal congruences are characterized. Furthermore, the number of congruences of finite $mLM_\{n \times m\}$-algebras is computed. In addition, a topological duality for $mLM_\{n \times m\}$-algebras is described and a characterization of $mLM_\{n \times m\}$-congruences in terms of special subsets of the associated space is shown. Moreover, the subsets which correspond to principal congruences are determined. Finally, some functional representation theorems for these algebras are given and the relationship between them is pointed out.},
author = {Figallo, A. V., Sanza, Claudia A.},
journal = {Mathematica Bohemica},
keywords = {$n$-valued Łukasiewicz-Moisil algebra; monadic $n$-valued Łukasiewicz-Moisil algebra; congruence; subdirectly irreducible algebra; discriminator variety; Priestley space; -valued Łukasiewicz-Moisil algebras; monadic -valued Łukasiewicz-Moisil algebras},
language = {eng},
number = {4},
pages = {425-447},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Monadic $n\times m$-valued Łukasiewicz-Moisil algebras},
url = {http://eudml.org/doc/246958},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Figallo, A. V.
AU - Sanza, Claudia A.
TI - Monadic $n\times m$-valued Łukasiewicz-Moisil algebras
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 4
SP - 425
EP - 447
AB - Here we initiate an investigation into the class $mLM_{n\times m}$ of monadic $n\times m$-valued Łukasiewicz-Moisil algebras (or $mLM_{n \times m}$-algebras), namely $n\times m$-valued Łukasiewicz-Moisil algebras endowed with a unary operation. These algebras constitute a generalization of monadic $n$-valued Łukasiewicz-Moisil algebras. In this article, the congruences on these algebras are determined and subdirectly irreducible algebras are characterized. From this last result it is proved that $mLM_{n\times m}$ is a discriminator variety and as a consequence, the principal congruences are characterized. Furthermore, the number of congruences of finite $mLM_{n \times m}$-algebras is computed. In addition, a topological duality for $mLM_{n \times m}$-algebras is described and a characterization of $mLM_{n \times m}$-congruences in terms of special subsets of the associated space is shown. Moreover, the subsets which correspond to principal congruences are determined. Finally, some functional representation theorems for these algebras are given and the relationship between them is pointed out.
LA - eng
KW - $n$-valued Łukasiewicz-Moisil algebra; monadic $n$-valued Łukasiewicz-Moisil algebra; congruence; subdirectly irreducible algebra; discriminator variety; Priestley space; -valued Łukasiewicz-Moisil algebras; monadic -valued Łukasiewicz-Moisil algebras
UR - http://eudml.org/doc/246958
ER -

References

top
  1. Balbes, R., Dwinger, Ph., Distributive Lattices, Univ. of Missouri Press, Columbia (1974). (1974) Zbl0321.06012MR0373985
  2. Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S., Łukasiewicz-Moisil Algebras, North-Holland, Amsterdam (1991). (1991) Zbl0726.06007MR1112790
  3. Burris, S., Sankappanavar, H. P., 10.1007/978-1-4613-8130-3_3, Springer, Berlin (1981). (1981) MR0648287DOI10.1007/978-1-4613-8130-3_3
  4. Cignoli, R., Moisil Algebras, Notas de Lógica Matemática 27, Inst. Mat. Univ. Nacional del Sur, Bahía Blanca (1970). (1970) MR0345884
  5. Cignoli, R., 10.1016/0012-365X(91)90312-P, Discrete Math. 96 (1991), 183-197. (1991) Zbl0753.06012MR1139446DOI10.1016/0012-365X(91)90312-P
  6. Cornish, W., Fowler, P., 10.1017/S0004972700022966, Bull. Aust. Math. Soc. 16 (1977), 1-13. (1977) Zbl0329.06005MR0434907DOI10.1017/S0004972700022966
  7. Figallo, A. V., Sanza, C., Advances in monadic n × m -valued Łukasiewicz algebras with negation, Abstracts of Lectures, Tutorials and Talks. International Conference on Order, Algebra and Logics. Vanderbilt University, Nashville, USA (2007), 46. (2007) MR2207304
  8. Figallo, A. V., Sanza, C., The 𝒩 S n × m -propositional calculus, Bull. Sect. Log. 35 (2008), 67-79. (2008) MR2460596
  9. Figallo, A. V., Sanza, C., Ziliani, A., Functional monadic n -valued Łukasiewicz algebras, Math. Bohem. 130 (2005), 337-348. (2005) Zbl1112.06010MR2182380
  10. Georgescu, G., Vraciu, C., Algebre Boole monadice si algebre Łukasiewicz monadice, Studii Cerc. Mat. 23 (1971), 1025-1048. (1971) 
  11. Halmos, P., Algebraic Logic I. Monadic Boolean algebras, Compositio Math. 12 (1955), 217-249. (1955) MR0078304
  12. Halmos, P., Algebraic Logic, Chelsea, New York (1962). (1962) Zbl0101.01101MR0131961
  13. Halmos, P., Lectures on Boolean Algebras, Van Nostrand, Princeton (1963). (1963) Zbl0114.01603MR0167440
  14. Moisil, Gr. C., Essais sur les logiques non Chrysippiennes, Bucarest (1972). (1972) Zbl0241.02006MR0398774
  15. Monteiro, A., Varsavsky, O., Algebras de Heyting monádicas, Actas de las X Jornadas de la Unión Matemática Argentina, Bahía Blanca (1957), 52-62. (1957) 
  16. Monteiro, L., Algebras de Lukasiewicz trivalentes monádicas, Notas de Lógica Matemática 32, Inst. Mat. Univ. Nacional del Sur, Bahía Blanca Spanish (1974). (1974) Zbl0298.02063MR0379184
  17. Priestley, H., 10.1112/blms/2.2.186, Bull. Lond. Math. Soc. 2 (1970), 186-190. (1970) Zbl0201.01802MR0265242DOI10.1112/blms/2.2.186
  18. Priestley, H., 10.1112/plms/s3-24.3.507, Proc. Lond. Math. Soc., III. Ser. 24 (1972), 507-530. (1972) Zbl0323.06011MR0300949DOI10.1112/plms/s3-24.3.507
  19. Priestley, H., Ordered sets and duality for distributive lattices, Ann. Discrete Math. 23 (1984), 39-60. (1984) Zbl0557.06007MR0779844
  20. Sanza, C., Algebras de Łukasiewicz matriciales n × m -valuadas con negación monádicas, Noticiero de la Unión Matemática, Argentina (2002), 165. (2002) 
  21. Sanza, C., 10.1093/jigpal/12.6.499, Log. J. IGPL 12 (2004), 499-507. (2004) Zbl1062.06018MR2117684DOI10.1093/jigpal/12.6.499
  22. Sanza, C., Algebras de Łukasiewicz n × m -valuadas con negación, Ph. D. Thesis, Univ. Nacional del Sur, Bahía Blanca, Argentina (2005). (2005) 
  23. Sanza, C., On monadic n × m -valued Łukasiewicz algebras with negation, Algebraic and Topological Methods in Non-Classical Logics II. Abstracts, Barcelona, España (2005), 71. (2005) MR2207304
  24. Sanza, C., n × m -valued Łukasiewicz algebras with negation, Rep. Math. Logic 40 (2006), 83-106. (2006) Zbl1096.03076MR2207304
  25. Sanza, C., 10.2478/s11533-008-0035-7, Cent. Eur. J. Math. 6 (2008), 372-383. (2008) Zbl1155.06009MR2424999DOI10.2478/s11533-008-0035-7
  26. Suchoń, W., Matrix Łukasiewicz algebras, Rep. Math. Logic 4 (1975), 91-104. (1975) Zbl0348.02021
  27. Werner, H., Discriminator-Algebras, Algebraic Representation and Model Theoretic Properties, Akademie, Berlin (1978). (1978) Zbl0374.08002MR0526402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.