A representation theorem for tense -valued Łukasiewicz-Moisil algebras
Aldo Victorio Figallo; Gustavo Pelaitay
Mathematica Bohemica (2015)
- Volume: 140, Issue: 3, page 345-360
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topFigallo, Aldo Victorio, and Pelaitay, Gustavo. "A representation theorem for tense $n\times m$-valued Łukasiewicz-Moisil algebras." Mathematica Bohemica 140.3 (2015): 345-360. <http://eudml.org/doc/271573>.
@article{Figallo2015,
abstract = {In 2000, Figallo and Sanza introduced $n\times m$-valued Łukasiewicz-Moisil algebras which are both particular cases of matrix Łukasiewicz algebras and a generalization of $n$-valued Łukasiewicz-Moisil algebras. Here we initiate an investigation into the class tLM$_\{n\times m\}$ of tense $n\times m$-valued Łukasiewicz-Moisil algebras (or tense LM$_\{n\times m\}$-algebras), namely $n\times m$-valued Łukasiewicz-Moisil algebras endowed with two unary operations called tense operators. These algebras constitute a generalization of tense Łukasiewicz-Moisil algebras (or tense LM$_\{n\}$-algebras). Our most important result is a representation theorem for tense LM$_\{n\times m\}$-algebras. Also, as a corollary of this theorem, we obtain the representation theorem given by Georgescu and Diaconescu in 2007, for tense LM$_\{n\}$-algebras.},
author = {Figallo, Aldo Victorio, Pelaitay, Gustavo},
journal = {Mathematica Bohemica},
keywords = {$n$-valued Łukasiewicz-Moisil algebra; tense $n$-valued Łukasiewicz-Moisil algebra; $n\times m$-valued Łukasiewicz-Moisil algebra},
language = {eng},
number = {3},
pages = {345-360},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A representation theorem for tense $n\times m$-valued Łukasiewicz-Moisil algebras},
url = {http://eudml.org/doc/271573},
volume = {140},
year = {2015},
}
TY - JOUR
AU - Figallo, Aldo Victorio
AU - Pelaitay, Gustavo
TI - A representation theorem for tense $n\times m$-valued Łukasiewicz-Moisil algebras
JO - Mathematica Bohemica
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 140
IS - 3
SP - 345
EP - 360
AB - In 2000, Figallo and Sanza introduced $n\times m$-valued Łukasiewicz-Moisil algebras which are both particular cases of matrix Łukasiewicz algebras and a generalization of $n$-valued Łukasiewicz-Moisil algebras. Here we initiate an investigation into the class tLM$_{n\times m}$ of tense $n\times m$-valued Łukasiewicz-Moisil algebras (or tense LM$_{n\times m}$-algebras), namely $n\times m$-valued Łukasiewicz-Moisil algebras endowed with two unary operations called tense operators. These algebras constitute a generalization of tense Łukasiewicz-Moisil algebras (or tense LM$_{n}$-algebras). Our most important result is a representation theorem for tense LM$_{n\times m}$-algebras. Also, as a corollary of this theorem, we obtain the representation theorem given by Georgescu and Diaconescu in 2007, for tense LM$_{n}$-algebras.
LA - eng
KW - $n$-valued Łukasiewicz-Moisil algebra; tense $n$-valued Łukasiewicz-Moisil algebra; $n\times m$-valued Łukasiewicz-Moisil algebra
UR - http://eudml.org/doc/271573
ER -
References
top- Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S., Łukasiewicz-Moisil Algebras, Annals of Discrete Mathematics 49 North-Holland, Amsterdam (1991). (1991) Zbl0726.06007MR1112790
- Botur, M., Chajda, I., Halaš, R., Kolařík, M., 10.1007/s10773-011-0748-4, Int. J. Theor. Phys. 50 (2011), 3737-3749. (2011) Zbl1246.81014MR2860032DOI10.1007/s10773-011-0748-4
- Botur, M., Paseka, J., On tense {MV}-algebras, Fuzzy Sets and Systems 259 (2015), 111-125. (2015) Zbl1335.03069MR3278748
- Burgess, J. P., Basic tense logic, Handbook of Philosophical Logic. Vol. II: Extensions of Classical Logic Synthese Lib. 165 D. Reidel Publishing, Dordrecht (1984), 89-133 D. Gabbay et al. (1984) Zbl0875.03046MR0844597
- Chajda, I., Kolařík, M., 10.2478/s12175-012-0015-z, Math. Slovaca 62 (2012), 379-388. (2012) Zbl1324.03026MR2915603DOI10.2478/s12175-012-0015-z
- Chajda, I., Paseka, J., 10.1007/s00500-012-0857-x, Soft Comput. 16 (2012), 1733-1741. (2012) Zbl1318.03059DOI10.1007/s00500-012-0857-x
- Chiriţă, C., 10.1007/s00500-011-0796-y, Soft Comput. 16 (2012), 979-987. (2012) Zbl1277.03067MR2760964DOI10.1007/s00500-011-0796-y
- Chiriţă, C., Tense -valued Łukasiewicz-Moisil algebras, J. Mult.-Val. Log. Soft Comput. 17 (2011), 1-24. (2011) Zbl1236.03046MR2760964
- Chiriţă, C., 10.15837/ijccc.2010.5.2220, Int. J. of Computers, Communications and Control 5 (2010), 642-653. (2010) DOI10.15837/ijccc.2010.5.2220
- Diaconescu, D., Georgescu, G., Tense operators on {MV}-algebras and Łukasiewicz-Moisil algebras, Fundam. Inform. 81 (2007), 379-408. (2007) Zbl1136.03045MR2372716
- Figallo, A. V., Pelaitay, G., 10.3233/FI-2015-1160, Fund. Inform. 136 (2015), 317-329. (2015) Zbl1350.03047MR3320018DOI10.3233/FI-2015-1160
- Figallo, A. V., Pelaitay, G., 10.1093/jigpal/jzt024, Log. J. IGPL 22 (2014), 255-267. (2014) Zbl1347.06012MR3188082DOI10.1093/jigpal/jzt024
- Figallo, A. V., Pelaitay, G., Note on tense SH-algebras, An. Univ. Craiova Ser. Mat. Inform. 38 (2011), 24-32. (2011) MR2874020
- Figallo, A. V., Pelaitay, G., Tense operators on SH-algebras, Pioneer J. Algebra Number Theory Appl. 1 (2011), 33-41. (2011) MR3029804
- Figallo, A. V., Sanza, C., Monadic -valued Łukasiewicz-Moisil algebras, Math. Bohem. 137 (2012), 425-447. (2012) Zbl1274.03104MR3058274
- Figallo, A. V., Sanza, C. A., The -propositional calculus, Bull. Sect. Log., Univ. Łód'z, Dep. Log. 37 (2008), 67-79. (2008) Zbl1286.03182MR2460596
- Figallo, A. V., Sanza, C., Álgebras de Łukasiewicz -valuadas con negación, Noticiero Unión Mat. Argent. 93 (2000), 93-94. (2000)
- Kowalski, T., Varieties of tense algebras, Rep. Math. Logic 32 (1998), 53-95. (1998) Zbl0941.03066MR1735173
- Moisil, G. C., Essais sur les logiques non chrysippiennes, Éditions de l'Académie de la République Socialiste de Roumanie Bucharest French (1972). (1972) Zbl0241.02006MR0398774
- Paseka, J., 10.1016/j.fss.2013.02.010, Fuzzy Sets and Systems 232 (2013), 62-73. (2013) Zbl1314.06016MR3118535DOI10.1016/j.fss.2013.02.010
- Sanza, C. A., 10.2478/s11533-008-0035-7, Cent. Eur. J. Math. 6 (2008), 372-383. (2008) Zbl1155.06009MR2424999DOI10.2478/s11533-008-0035-7
- Sanza, C. A., -valued Łukasiewicz algebras with negation, Rep. Math. Logic 40 (2006), 83-106. (2006) Zbl1096.03076MR2207304
- Sanza, C., Álgebras de Łukasiewicz -valuadas con negación, Doctoral Thesis Universidad Nacional del Sur, Bahía Blanca, Argentina (2005). (2005)
- Sanza, C., 10.1093/jigpal/12.6.499, Log. J. IGPL 12 (2004), 499-507. (2004) Zbl1062.06018MR2117684DOI10.1093/jigpal/12.6.499
- Suchoń, W., Matrix Łukasiewicz algebras, Rep. Math. Logic 4 (1975), 91-104. (1975) Zbl0348.02021
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.