A Topological Approach to Tense LMn×m-Algebras

Aldo V. Figallo; Inés Pascual; Gustavo Pelaitay

Bulletin of the Section of Logic (2020)

  • Volume: 49, Issue: 1
  • ISSN: 0138-0680

Abstract

top
In 2015, tense n × m-valued Lukasiewicz–Moisil algebras (or tense LMn×m-algebras) were introduced by A. V. Figallo and G. Pelaitay as an generalization of tense n-valued Łukasiewicz–Moisil algebras. In this paper we continue the study of tense LMn×m-algebras. More precisely, we determine a Priestley-style duality for these algebras. This duality enables us not only to describe the tense LMn×m-congruences on a tense LMn×m-algebra, but also to characterize the simple and subdirectly irreducible tense LMn×m-algebras.

How to cite

top

Aldo V. Figallo, Inés Pascual, and Gustavo Pelaitay. "A Topological Approach to Tense LMn×m-Algebras." Bulletin of the Section of Logic 49.1 (2020): null. <http://eudml.org/doc/295572>.

@article{AldoV2020,
abstract = {In 2015, tense n × m-valued Lukasiewicz–Moisil algebras (or tense LMn×m-algebras) were introduced by A. V. Figallo and G. Pelaitay as an generalization of tense n-valued Łukasiewicz–Moisil algebras. In this paper we continue the study of tense LMn×m-algebras. More precisely, we determine a Priestley-style duality for these algebras. This duality enables us not only to describe the tense LMn×m-congruences on a tense LMn×m-algebra, but also to characterize the simple and subdirectly irreducible tense LMn×m-algebras.},
author = {Aldo V. Figallo, Inés Pascual, Gustavo Pelaitay},
journal = {Bulletin of the Section of Logic},
keywords = {Priestley-style topological duality; Priestley spaces; tense De Morgan algebras; Tense LMn×m-algebras},
language = {eng},
number = {1},
pages = {null},
title = {A Topological Approach to Tense LMn×m-Algebras},
url = {http://eudml.org/doc/295572},
volume = {49},
year = {2020},
}

TY - JOUR
AU - Aldo V. Figallo
AU - Inés Pascual
AU - Gustavo Pelaitay
TI - A Topological Approach to Tense LMn×m-Algebras
JO - Bulletin of the Section of Logic
PY - 2020
VL - 49
IS - 1
SP - null
AB - In 2015, tense n × m-valued Lukasiewicz–Moisil algebras (or tense LMn×m-algebras) were introduced by A. V. Figallo and G. Pelaitay as an generalization of tense n-valued Łukasiewicz–Moisil algebras. In this paper we continue the study of tense LMn×m-algebras. More precisely, we determine a Priestley-style duality for these algebras. This duality enables us not only to describe the tense LMn×m-congruences on a tense LMn×m-algebra, but also to characterize the simple and subdirectly irreducible tense LMn×m-algebras.
LA - eng
KW - Priestley-style topological duality; Priestley spaces; tense De Morgan algebras; Tense LMn×m-algebras
UR - http://eudml.org/doc/295572
ER -

References

top
  1. [1] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, Łukasiewicz–Moisil Algebras, Annals of Discrete Mathematics, Vol. 49 (1991), North-Holland. 
  2. [2] M. Botur, I. Chajda, R. Halaš and M. Kolařík, Tense operators on Basic Algebras, International Journal of Theoretical Physics, Vol. 50, No. 12 (2011), pp. 3737–3749. 
  3. [3] M. Botur, J. Paseka, On tense MV -algebras, Fuzzy Sets and Systems, Vol. 259 (2015), pp. 111–125. 
  4. [4] J. Burges, Basic tense logic, [in:] D. M. Gabbay, F. Günter (eds.), Handbook of Philosophical Logic, Vol. II, Reidel, Dordrecht (1984), pp. 89–139. 
  5. [5] I. Chajda, Algebraic axiomatization of tense intuitionistic logic, Central European Journal of Mathematics, Vol. 9, No. 5 (2011), pp. 1185–1191. 
  6. [6] I. Chajda and J. Paseka, Dynamic effect algebras and their representations, Soft Computing, Vol. 16, No. 10 (2012), pp. 1733–1741. 
  7. [7] I. Chajda and M. Kolařík, Dynamic Effect Algebras, Mathematica Slovaca, Vol. 62, No. 3 (2012), pp. 379–388. 
  8. [8] C. Chiriţă, Tense θ-valued Moisil propositional logic, International Journal of Computers Communications and Control, Vol. 5 (2010), pp. 642–653. 
  9. [9] C. Chiriţă, Tense θ-valued Łukasiewicz–Moisil algebras, Journal of Multiple-Valued Logic and Soft Computing, Vol. 17, No. 1 (2011), pp. 1–24. 
  10. [10] R. Cignoli, Moisil Algebras, Notas de Lógica Matemática, Vol. 27 (1970), Instituto de Matemática, Universidad del Sur, Bahía Blanca. 
  11. [11] W. Cornish and P. Fowler, Coproducts of De Morgan algebras, Bulletin of the Australian Mathematical Society, Vol. 16 (1977), pp. 1–13. 
  12. [12]D. Diaconescu and G. Georgescu, Tense operators on MV -algebras and Łukasiewicz–Moisil algebras, Fundamenta Informaticae, Vol. 81, No. 4 (2007), pp. 379–408. 
  13. [13] A. V. Figallo, G. Pelaitay, n × m-valued Łukasiewicz–Moisil algebras with two modal operators, South American Journal of Logic, Vol. 1, No. 1 (2015), pp. 267–281. 
  14. [14] A. V. Figallo, I. Pascual, G. Pelaitay, A topological duality for tense LMn-algebras and applications, Logic Journal of the IGPL, Vol. 26, No. 4 (2018), pp. 339–380. 
  15. [15] A. V. Figallo and G. Pelaitay, Note on tense SHn-algebras, Analele Universitatii din Craiova. Seria Matematica-Informatica, Vol. 38, No. 4 (2011), pp. 24–32. 
  16. [16] A. V. Figallo and G. Pelaitay, Tense operators on De Morgan algebras, Logic Journal of the IGPL, Vol. 22, No. 2, (2014), pp. 255–267. 
  17. [17] A. V. Figallo and G. Pelaitay, A representation theorem for tense n × m-valued Łukasiewicz–Moisil algebras, Mathematica Bohemica, Vol. 140, No. 3 (2015), pp. 345–360. 
  18. [18] A. V. Figallo and G. Pelaitay, Discrete duality for tense Łukasiewicz–Moisil algebras, Fundamenta Informaticae, Vol. 136, No. 4 (2015), pp. 317–329. 
  19. [19] T. Kowalski, Varieties of tense algebras, Reports on Mathematical Logic, Vol. 32 (1998), pp. 53–95. 
  20. [20] Gr. C. Moisil, Recherches sur les logiques non-chrysippiennes, Annales scientifiques de l'Université de Jassy, Vol. 26 (1940), pp. 431–466. 
  21. [21] J. Paseka, Operators on MV-algebras and their representations, Fuzzy Sets and Systems, Vol. 232 (2013), pp. 62–73. 
  22. [22] H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bulletin of the London Mathematical Society, Vol. 2 (1970), pp. 186–190. 
  23. [23] A. V. Figallo and C. Sanza, Álgebras de Łukasiewicz matriciales n × m-valuadas con negación, Noticiero de la Unión Matemática Argentina, Vol. 93 (2000). 
  24. [24] A. V. Figallo and C. Sanza, The NSn × m-propositional calculus, Bulletin of the Section of Logic, Vol. 35, No. 2 (2008), pp. 67–79. 
  25. [25] A. V. Figallo and C. Sanza, Monadic n × m-valued Łukasiewicz–Mosil algebras, Mathematica Bohemica, Vol. 137, No. 4 (2012), pp. 425–447. 
  26. [26] A. V. Figallo and G. Pelaitay, A representation theorem for tense n × m-valued Łukasiewicz–Moisil algebras, Mathematica Bohemica, Vol. 140, No. 3 (2015), pp. 345–360. 
  27. [27] A. V. Figallo, I. Pascual, G. Pelaitay, A new topological duality for n × m-valued Łukasiewicz–Moisil algebras, Asian–European Journal of Mathematics (2019). 
  28. [28] C. Gallardo, C. Sanza and A. Ziliani, F-multipliers and the localization of LMn × m-algebras, Analele Stiintice ale Universitatii Ovidius Constanta, Vol. 21, No. 1 (2013), pp. 285–304. 
  29. [29] Gr. C. Moisil, Essais sur les logiques non Chrysippiennes, Ed. Academiei, Bucarest, 1972. 
  30. [30] H. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bulletin of the London Mathematical Society, Vol. 2 (1970), pp. 186–190. 
  31. [31] H. Priestley, Ordered topological spaces and the representation of distributive lattices, Proceedings of the London Mathematical Society, Vol. 3 (1972), pp. 507–530. 
  32. [32] H. Priestley, Ordered sets duality for distributive lattices, Annals of Discrete Mathematics, Vol. 23 (1984), pp. 39–60. 
  33. [33] C. Sanza, Notes on n × m-valued Łukasiewicz algebras with negation, Logic Journal of the IGPL, Vol. 6, No. 12 (2004), pp. 499–507. 
  34. [34] C. Sanza, n × m-valued Łukasiewicz algebras with negation, Reports on Mathematical Logic, Vol. 40 (2006), pp. 83–106. 
  35. [35] C. Sanza, On n × m-valued Łukasiewicz-Moisil algebras, Central European Journal of Mathematics, Vol. 6, No. 3 (2008), pp. 372–383. 
  36. [36] W. Suchoń, Matrix Łukasiewicz Algebras, Reports on Mathematical Logic, Vol. 4 (1975), pp. 91–104. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.