Equations containing locally Henstock-Kurzweil integrable functions

Seppo Heikkilä; Guoju Ye

Applications of Mathematics (2012)

  • Volume: 57, Issue: 6, page 569-580
  • ISSN: 0862-7940

Abstract

top
A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.

How to cite

top

Heikkilä, Seppo, and Ye, Guoju. "Equations containing locally Henstock-Kurzweil integrable functions." Applications of Mathematics 57.6 (2012): 569-580. <http://eudml.org/doc/246976>.

@article{Heikkilä2012,
abstract = {A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.},
author = {Heikkilä, Seppo, Ye, Guoju},
journal = {Applications of Mathematics},
keywords = {integrability; Henstock-Kurzweil integral; ordered Banach space; order cone; chain; fixed point; functional integral equation; Volterra; Cauchy problem; ordered Banach space; fixed point; Volterra integral equation; Henstock-Kurzweil integral; ordered Banach space; fixed point; Cauchy problem; functional integral equation},
language = {eng},
number = {6},
pages = {569-580},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equations containing locally Henstock-Kurzweil integrable functions},
url = {http://eudml.org/doc/246976},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Heikkilä, Seppo
AU - Ye, Guoju
TI - Equations containing locally Henstock-Kurzweil integrable functions
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 6
SP - 569
EP - 580
AB - A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.
LA - eng
KW - integrability; Henstock-Kurzweil integral; ordered Banach space; order cone; chain; fixed point; functional integral equation; Volterra; Cauchy problem; ordered Banach space; fixed point; Volterra integral equation; Henstock-Kurzweil integral; ordered Banach space; fixed point; Cauchy problem; functional integral equation
UR - http://eudml.org/doc/246976
ER -

References

top
  1. Carl, S., Heikkilä, S., 10.1016/S0362-546X(98)00305-8, Nonlinear Anal., Theory Methods Appl. 41 (2000), 701-723. (2000) MR1780640DOI10.1016/S0362-546X(98)00305-8
  2. Federson, M., Bianconi, M., 10.1515/JAA.2002.83, J. Appl. Anal. 8 (2002), 83-110. (2002) Zbl1043.45010MR1921473DOI10.1515/JAA.2002.83
  3. Federson, M., Schwabik, Š., Generalized ordinary differential equations approach to impulsive retarded functional differential equations, Differ. Integral Equ. 19 (2006), 1201-1234. (2006) MR2278005
  4. Federson, M., Táboas, P., 10.1016/S0362-546X(01)00769-6, Nonlinear Anal., Theory Methods Appl. 50 (2002), 389-407. (2002) Zbl1011.34070MR1906469DOI10.1016/S0362-546X(01)00769-6
  5. Guo, D., Cho, Y. J., Zhu, J., Partial Ordering Methods in Nonlinear Problems, Nova Science Publishers, Inc. New York (2004). (2004) Zbl1116.45007MR2084490
  6. Heikkilä, S., Kumpulainen, S., Kumpulainen, M., 10.1016/j.jmaa.2005.06.051, J. Math. Anal. Appl. 319 (2006), 579-603. (2006) Zbl1105.34037MR2227925DOI10.1016/j.jmaa.2005.06.051
  7. Heikkilä, S., Lakshmikantham, V., Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, Inc. New York (1994). (1994) Zbl0804.34001MR1280028
  8. Heikkilä, S., Seikkala, S., On non-absolute functional Volterra integral equations and impulsive differential equations in ordered Banach spaces, Electron. J. Differ. Equ., paper No. 103 (2008), 1-11. (2008) Zbl1168.45011MR2430900
  9. Heikkilä, S., Ye, G., Convergence and comparison results for Henstock-Kurzweil and McShane integrable vector-valued functions, Southeast Asian Bull. Math. 35 (2011), 407-418. (2011) Zbl1240.26025MR2856387
  10. Lu, J., Lee, P.-Y., 10.2307/44154035, Real Anal. Exch. 25 (2000), 795-797. (2000) Zbl1015.26016MR1778532DOI10.2307/44154035
  11. Satco, B.-R., Nonlinear Volterra integral equations in Henstock integrability setting, Electron. J. Differ. Equ., paper No. 39 (2008), 1-9. (2008) Zbl1169.45300MR2392943
  12. Schwabik, Š., Ye, G., Topics in Banach Space Integration, World Scientific Hackensack (2005). (2005) Zbl1088.28008MR2167754
  13. Sikorska-Nowak, A., 10.4064/ap83-3-7, Ann. Pol. Math. 83 (2004), 257-267. (2004) Zbl1101.45006MR2111712DOI10.4064/ap83-3-7
  14. Sikorska-Nowak, A., 10.1155/2007/31572, J. Appl. Math., Article ID31572 (2007), 1-12. (2007) MR2317885DOI10.1155/2007/31572
  15. Sikorska-Nowak, A., Existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 227-238. (2007) MR2377959
  16. Sikorska-Nowak, A., 10.1155/2007/65947, Int. J. Math. Math. Sci., Article ID65947 (2007), 1-14. (2007) Zbl1147.45009MR2336140DOI10.1155/2007/65947
  17. Sikorska-Nowak, A., Nonlinear integral equations in Banach spaces and Henstock-Kurzweil-Pettis integrals, Dyn. Syst. Appl. 17 (2008), 97-107. (2008) Zbl1154.45011MR2433893

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.