Equations containing locally Henstock-Kurzweil integrable functions
Applications of Mathematics (2012)
- Volume: 57, Issue: 6, page 569-580
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHeikkilä, Seppo, and Ye, Guoju. "Equations containing locally Henstock-Kurzweil integrable functions." Applications of Mathematics 57.6 (2012): 569-580. <http://eudml.org/doc/246976>.
@article{Heikkilä2012,
abstract = {A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.},
author = {Heikkilä, Seppo, Ye, Guoju},
journal = {Applications of Mathematics},
keywords = {integrability; Henstock-Kurzweil integral; ordered Banach space; order cone; chain; fixed point; functional integral equation; Volterra; Cauchy problem; ordered Banach space; fixed point; Volterra integral equation; Henstock-Kurzweil integral; ordered Banach space; fixed point; Cauchy problem; functional integral equation},
language = {eng},
number = {6},
pages = {569-580},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equations containing locally Henstock-Kurzweil integrable functions},
url = {http://eudml.org/doc/246976},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Heikkilä, Seppo
AU - Ye, Guoju
TI - Equations containing locally Henstock-Kurzweil integrable functions
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 6
SP - 569
EP - 580
AB - A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.
LA - eng
KW - integrability; Henstock-Kurzweil integral; ordered Banach space; order cone; chain; fixed point; functional integral equation; Volterra; Cauchy problem; ordered Banach space; fixed point; Volterra integral equation; Henstock-Kurzweil integral; ordered Banach space; fixed point; Cauchy problem; functional integral equation
UR - http://eudml.org/doc/246976
ER -
References
top- Carl, S., Heikkilä, S., 10.1016/S0362-546X(98)00305-8, Nonlinear Anal., Theory Methods Appl. 41 (2000), 701-723. (2000) MR1780640DOI10.1016/S0362-546X(98)00305-8
- Federson, M., Bianconi, M., 10.1515/JAA.2002.83, J. Appl. Anal. 8 (2002), 83-110. (2002) Zbl1043.45010MR1921473DOI10.1515/JAA.2002.83
- Federson, M., Schwabik, Š., Generalized ordinary differential equations approach to impulsive retarded functional differential equations, Differ. Integral Equ. 19 (2006), 1201-1234. (2006) MR2278005
- Federson, M., Táboas, P., 10.1016/S0362-546X(01)00769-6, Nonlinear Anal., Theory Methods Appl. 50 (2002), 389-407. (2002) Zbl1011.34070MR1906469DOI10.1016/S0362-546X(01)00769-6
- Guo, D., Cho, Y. J., Zhu, J., Partial Ordering Methods in Nonlinear Problems, Nova Science Publishers, Inc. New York (2004). (2004) Zbl1116.45007MR2084490
- Heikkilä, S., Kumpulainen, S., Kumpulainen, M., 10.1016/j.jmaa.2005.06.051, J. Math. Anal. Appl. 319 (2006), 579-603. (2006) Zbl1105.34037MR2227925DOI10.1016/j.jmaa.2005.06.051
- Heikkilä, S., Lakshmikantham, V., Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, Inc. New York (1994). (1994) Zbl0804.34001MR1280028
- Heikkilä, S., Seikkala, S., On non-absolute functional Volterra integral equations and impulsive differential equations in ordered Banach spaces, Electron. J. Differ. Equ., paper No. 103 (2008), 1-11. (2008) Zbl1168.45011MR2430900
- Heikkilä, S., Ye, G., Convergence and comparison results for Henstock-Kurzweil and McShane integrable vector-valued functions, Southeast Asian Bull. Math. 35 (2011), 407-418. (2011) Zbl1240.26025MR2856387
- Lu, J., Lee, P.-Y., 10.2307/44154035, Real Anal. Exch. 25 (2000), 795-797. (2000) Zbl1015.26016MR1778532DOI10.2307/44154035
- Satco, B.-R., Nonlinear Volterra integral equations in Henstock integrability setting, Electron. J. Differ. Equ., paper No. 39 (2008), 1-9. (2008) Zbl1169.45300MR2392943
- Schwabik, Š., Ye, G., Topics in Banach Space Integration, World Scientific Hackensack (2005). (2005) Zbl1088.28008MR2167754
- Sikorska-Nowak, A., 10.4064/ap83-3-7, Ann. Pol. Math. 83 (2004), 257-267. (2004) Zbl1101.45006MR2111712DOI10.4064/ap83-3-7
- Sikorska-Nowak, A., 10.1155/2007/31572, J. Appl. Math., Article ID31572 (2007), 1-12. (2007) MR2317885DOI10.1155/2007/31572
- Sikorska-Nowak, A., Existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 227-238. (2007) MR2377959
- Sikorska-Nowak, A., 10.1155/2007/65947, Int. J. Math. Math. Sci., Article ID65947 (2007), 1-14. (2007) Zbl1147.45009MR2336140DOI10.1155/2007/65947
- Sikorska-Nowak, A., Nonlinear integral equations in Banach spaces and Henstock-Kurzweil-Pettis integrals, Dyn. Syst. Appl. 17 (2008), 97-107. (2008) Zbl1154.45011MR2433893
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.