Existence theory for integrodifferential equations and Henstock-Kurzweil integral in Banach spaces.
Sikorska-Nowak, Aneta (2007)
Journal of Applied Mathematics
Similarity:
Sikorska-Nowak, Aneta (2007)
Journal of Applied Mathematics
Similarity:
Sikorska-Nowak, Aneta, Nowak, Grzegorz (2007)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Bugajewski, D. (1998)
Mathematica Pannonica
Similarity:
Mieczysław Cichoń, Ireneusz Kubiaczyk, Sikorska-Nowak, Aneta Sikorska-Nowak, Aneta (2004)
Czechoslovak Mathematical Journal
Similarity:
In this paper we prove an existence theorem for the Cauchy problem using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function satisfies some conditions expressed in terms of measures of weak noncompactness.
Márcia Federson, Ricardo Bianconi (2001)
Archivum Mathematicum
Similarity:
In 1990, Hönig proved that the linear Volterra integral equation where the functions are Banach space-valued and is a Kurzweil integrable function defined on a compact interval of the real line , admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation in a real-valued context.