Metrization of function spaces with the Fell topology

Hanbiao Yang

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 2, page 307-318
  • ISSN: 0010-2628

Abstract

top
For a Tychonoff space X , let C F ( X ) be the family of hypographs of all continuous maps from X to [ 0 , 1 ] endowed with the Fell topology. It is proved that X has a dense separable metrizable locally compact open subset if C F ( X ) is metrizable. Moreover, for a first-countable space X , C F ( X ) is metrizable if and only if X itself is a locally compact separable metrizable space. There exists a Tychonoff space X such that C F ( X ) is metrizable but X is not first-countable.

How to cite

top

Yang, Hanbiao. "Metrization of function spaces with the Fell topology." Commentationes Mathematicae Universitatis Carolinae 53.2 (2012): 307-318. <http://eudml.org/doc/246992>.

@article{Yang2012,
abstract = {For a Tychonoff space $X$, let $\downarrow \{\rm C\}_F(X)$ be the family of hypographs of all continuous maps from $X$ to $[0,1]$ endowed with the Fell topology. It is proved that $X$ has a dense separable metrizable locally compact open subset if $\downarrow \{\rm C\}_F(X)$ is metrizable. Moreover, for a first-countable space $X$, $\downarrow \{\rm C\}_F(X)$ is metrizable if and only if $X$ itself is a locally compact separable metrizable space. There exists a Tychonoff space $X$ such that $\downarrow \{\rm C\}_F(X)$ is metrizable but $X$ is not first-countable.},
author = {Yang, Hanbiao},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {space of continuous maps; Fell topology; hyperspace; metrizable; hypograph; separable; first-countable; function space; hyperspace; hypograph; Fell topology; metrizable; first countable},
language = {eng},
number = {2},
pages = {307-318},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Metrization of function spaces with the Fell topology},
url = {http://eudml.org/doc/246992},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Yang, Hanbiao
TI - Metrization of function spaces with the Fell topology
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 2
SP - 307
EP - 318
AB - For a Tychonoff space $X$, let $\downarrow {\rm C}_F(X)$ be the family of hypographs of all continuous maps from $X$ to $[0,1]$ endowed with the Fell topology. It is proved that $X$ has a dense separable metrizable locally compact open subset if $\downarrow {\rm C}_F(X)$ is metrizable. Moreover, for a first-countable space $X$, $\downarrow {\rm C}_F(X)$ is metrizable if and only if $X$ itself is a locally compact separable metrizable space. There exists a Tychonoff space $X$ such that $\downarrow {\rm C}_F(X)$ is metrizable but $X$ is not first-countable.
LA - eng
KW - space of continuous maps; Fell topology; hyperspace; metrizable; hypograph; separable; first-countable; function space; hyperspace; hypograph; Fell topology; metrizable; first countable
UR - http://eudml.org/doc/246992
ER -

References

top
  1. Beer G., Topologies on Closed and Closed Convex Sets, MIA 268, Kluwer Acad. Publ., Dordrecht, 1993. Zbl0792.54008MR1269778
  2. Kelly J.L., General Topology, GTM 27, Springer, New York; Reprint of the 1955 ed. published by Van Nostrand, 1955. MR0070144
  3. Michael E., 10.1090/S0002-9947-1951-0042109-4, Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl0043.37902MR0042109DOI10.1090/S0002-9947-1951-0042109-4
  4. Yang Z., The hyperspace of the regions below of continuous maps is homeomorphic to c 0 , Topology Appl. 153 (2006), 2908–2921. Zbl1111.54008MR2248393
  5. Yang Z., Fan L., The hyperspace of the regions below of continuous maps from the converging sequence, Northeast Math. J. 22 (2006), 45–54. Zbl1089.54006MR2208621
  6. Yang Z., Wu N., The hyperspace of the regions below of continuous maps from S*S to I, Questions Answers Gen. Topology 26 (2008), 29–39. MR2413994
  7. Yang Z., Wu N., 10.1007/s11425-008-0152-6, Science in China, Ser. A: Math. 52 (2009), 1815–1828. Zbl1184.54013MR2530192DOI10.1007/s11425-008-0152-6
  8. Yang Z., Zhang B., 10.1007/s10114-012-0030-6, Acta Math. Sinica, English Ser. 28 (2012), 57–66. MR2863750DOI10.1007/s10114-012-0030-6
  9. Yang Z., Zhou X., 10.1016/j.topol.2006.12.013, Topology Appl. 154 (2007), 1737–1747. Zbl1119.54010MR2317076DOI10.1016/j.topol.2006.12.013
  10. Zhang Y., Yang Z., Hyperspaces of the regions below of upper semi-continuous maps on non-compact metric spaces, Advances in Math. in China 39 (2010), 352–360 (Chinese). MR2724454
  11. McCoy R.A., Ntanyu I., Properties C ( X ) with the epi-topology, Bollettion U.M.I. (7)6-B(1992), 507–532. MR1191951

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.