Metrization of function spaces with the Fell topology
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 2, page 307-318
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topYang, Hanbiao. "Metrization of function spaces with the Fell topology." Commentationes Mathematicae Universitatis Carolinae 53.2 (2012): 307-318. <http://eudml.org/doc/246992>.
@article{Yang2012,
abstract = {For a Tychonoff space $X$, let $\downarrow \{\rm C\}_F(X)$ be the family of hypographs of all continuous maps from $X$ to $[0,1]$ endowed with the Fell topology. It is proved that $X$ has a dense separable metrizable locally compact open subset if $\downarrow \{\rm C\}_F(X)$ is metrizable. Moreover, for a first-countable space $X$, $\downarrow \{\rm C\}_F(X)$ is metrizable if and only if $X$ itself is a locally compact separable metrizable space. There exists a Tychonoff space $X$ such that $\downarrow \{\rm C\}_F(X)$ is metrizable but $X$ is not first-countable.},
author = {Yang, Hanbiao},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {space of continuous maps; Fell topology; hyperspace; metrizable; hypograph; separable; first-countable; function space; hyperspace; hypograph; Fell topology; metrizable; first countable},
language = {eng},
number = {2},
pages = {307-318},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Metrization of function spaces with the Fell topology},
url = {http://eudml.org/doc/246992},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Yang, Hanbiao
TI - Metrization of function spaces with the Fell topology
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 2
SP - 307
EP - 318
AB - For a Tychonoff space $X$, let $\downarrow {\rm C}_F(X)$ be the family of hypographs of all continuous maps from $X$ to $[0,1]$ endowed with the Fell topology. It is proved that $X$ has a dense separable metrizable locally compact open subset if $\downarrow {\rm C}_F(X)$ is metrizable. Moreover, for a first-countable space $X$, $\downarrow {\rm C}_F(X)$ is metrizable if and only if $X$ itself is a locally compact separable metrizable space. There exists a Tychonoff space $X$ such that $\downarrow {\rm C}_F(X)$ is metrizable but $X$ is not first-countable.
LA - eng
KW - space of continuous maps; Fell topology; hyperspace; metrizable; hypograph; separable; first-countable; function space; hyperspace; hypograph; Fell topology; metrizable; first countable
UR - http://eudml.org/doc/246992
ER -
References
top- Beer G., Topologies on Closed and Closed Convex Sets, MIA 268, Kluwer Acad. Publ., Dordrecht, 1993. Zbl0792.54008MR1269778
- Kelly J.L., General Topology, GTM 27, Springer, New York; Reprint of the 1955 ed. published by Van Nostrand, 1955. MR0070144
- Michael E., 10.1090/S0002-9947-1951-0042109-4, Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl0043.37902MR0042109DOI10.1090/S0002-9947-1951-0042109-4
- Yang Z., The hyperspace of the regions below of continuous maps is homeomorphic to , Topology Appl. 153 (2006), 2908–2921. Zbl1111.54008MR2248393
- Yang Z., Fan L., The hyperspace of the regions below of continuous maps from the converging sequence, Northeast Math. J. 22 (2006), 45–54. Zbl1089.54006MR2208621
- Yang Z., Wu N., The hyperspace of the regions below of continuous maps from S*S to I, Questions Answers Gen. Topology 26 (2008), 29–39. MR2413994
- Yang Z., Wu N., 10.1007/s11425-008-0152-6, Science in China, Ser. A: Math. 52 (2009), 1815–1828. Zbl1184.54013MR2530192DOI10.1007/s11425-008-0152-6
- Yang Z., Zhang B., 10.1007/s10114-012-0030-6, Acta Math. Sinica, English Ser. 28 (2012), 57–66. MR2863750DOI10.1007/s10114-012-0030-6
- Yang Z., Zhou X., 10.1016/j.topol.2006.12.013, Topology Appl. 154 (2007), 1737–1747. Zbl1119.54010MR2317076DOI10.1016/j.topol.2006.12.013
- Zhang Y., Yang Z., Hyperspaces of the regions below of upper semi-continuous maps on non-compact metric spaces, Advances in Math. in China 39 (2010), 352–360 (Chinese). MR2724454
- McCoy R.A., Ntanyu I., Properties with the epi-topology, Bollettion U.M.I. (7)6-B(1992), 507–532. MR1191951
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.