Displaying similar documents to “Metrization of function spaces with the Fell topology”

A note on topological groups and their remainders

Liang-Xue Peng, Yu-Feng He (2012)

Czechoslovak Mathematical Journal

Similarity:

In this note we first give a summary that on property of a remainder of a non-locally compact topological group G in a compactification b G makes the remainder and the topological group G all separable and metrizable. If a non-locally compact topological group G has a compactification b G such that the remainder b G G of G belongs to 𝒫 , then G and b G G are separable and metrizable, where 𝒫 is a class of spaces which satisfies the following conditions: (1) if X 𝒫 , then every compact subset of the...

𝒫 -approximable compact spaces

Mihail G. Tkachenko (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For every topological property 𝒫 , we define the class of 𝒫 -approximable spaces which consists of spaces X having a countable closed cover γ such that the “section” X ( x , γ ) = { F γ : x F } has the property 𝒫 for each x X . It is shown that every 𝒫 -approximable compact space has 𝒫 , if 𝒫 is one of the following properties: countable tightness, 0 -scatteredness with respect to character, C -closedness, sequentiality (the last holds under MA or 2 0 < 2 1 ). Metrizable-approximable spaces are studied: every compact space in...

Functional separability

Ronnie Levy, M. Matveev (2010)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is functionally countable (FC) if for every continuous f : X , | f ( X ) | ω . The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, σ -products in 2 κ , and some L-spaces. We consider the following three versions of functional separability: X is 1-FS if it has a dense FC subspace; X is 2-FS if there is a dense subspace Y X such that for every continuous f : X , | f ( Y ) | ω ; X is 3-FS if for every continuous f : X , there is a dense subspace Y X such that | f ( Y ) | ω . We give examples...