Displaying similar documents to “A class of metrics on tangent bundles of pseudo-Riemannian manifolds”

On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity

Uday Chand De, Avik De (2012)

Czechoslovak Mathematical Journal

Similarity:

The object of the present paper is to study almost pseudo-conformally symmetric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric Ricci-recurrent manifolds has been proved by an explicit example. Some geometric properties have been studied. Among others we prove that in such a manifold the vector field ρ corresponding to the 1-form of recurrence is irrotational and the integral curves of the vector field ρ are geodesic. We also study some global properties...

On the geometry of frame bundles

Kamil Niedziałomski (2012)

Archivum Mathematicum

Similarity:

Let ( M , g ) be a Riemannian manifold, L ( M ) its frame bundle. We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the tangent bundle T M . We compute the Levi–Civita connection and curvatures of these metrics.

High-order angles in almost-Riemannian geometry

Ugo Boscain, Mario Sigalotti (2006-2007)

Séminaire de théorie spectrale et géométrie

Similarity:

Let X and Y be two smooth vector fields on a two-dimensional manifold M . If X and Y are everywhere linearly independent, then they define a Riemannian metric on M (the metric for which they are orthonormal) and they give to M the structure of metric space. If X and Y become linearly dependent somewhere on M , then the corresponding Riemannian metric has singularities, but under generic conditions the metric structure is still well defined. Metric structures that can be defined locally...